Section: Evolutionary Biology
Topic: Evolution, Population biology

Landscape connectivity alters the evolution of density-dependent dispersal during pushed range expansions

Corresponding author(s): Dahirel, Maxime (maxime.dahirel@yahoo.fr)

10.24072/pcjournal.347 - Peer Community Journal, Volume 3 (2023), article no. e114.

Get full text PDF Peer reviewed and recommended by PCI
article image

As human influence reshapes communities worldwide, many species expand or shift their ranges as a result, with extensive consequences across levels of biological organization. Range expansions can be ranked on a continuum going from pulled dynamics, in which low-density edge populations provide the “fuel” for the advance, to pushed dynamics in which high-density rear populations “push” the expansion forward. While theory suggests that evolution during range expansions could lead pushed expansions to become pulled with time, empirical comparisons of phenotypic divergence in pushed vs. pulled contexts are lacking. In a previous experiment using Trichogramma brassicae wasps as a model, we showed that expansions were more pushed when connectivity was lower. Here we used descendants from these experimental landscapes to look at how the range expansion process and connectivity interact to shape phenotypic evolution. Interestingly, we found no clear and consistent phenotypic shifts, whether along expansion gradients or between reference and low connectivity replicates, when we focused on low-density trait expression. However, we found evidence of changes in density-dependence, in particular regarding dispersal: populations went from positive to negative density-dependent dispersal at the expansion edge, but only when connectivity was high. As positive density-dependent dispersal leads to pushed expansions, our results confirm predictions that evolution during range expansions may lead pushed expansions to become pulled, but add nuance by showing landscape conditions may slow down or cancel this process. This shows we need to jointly consider evolution and landscape context to accurately predict range expansion dynamics and their consequences.

Published online:
DOI: 10.24072/pcjournal.347
Type: Research article
Mots-clés : biological invasions, context-dependent dispersal, experimental evolution, habitat fragmentation, spatial sorting, Trichogramma

Dahirel, Maxime 1; Bertin, Aline 1; Calcagno, Vincent 1; Duraj, Camille 1; Fellous, Simon 2; Groussier, Géraldine 1; Lombaert, Eric 1; Mailleret, Ludovic 1, 3; Marchand, Anaël 1; Vercken, Elodie 1

1 Université Côte d’Azur, INRAE, CNRS, ISA – Sophia-Antipolis, France
2 INRAE, Univ. Montpellier, CIRAD, IRD, Montpellier SupAgro, CBGP – Montpellier, France
3 Université Côte d’Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORE – Sophia Antipolis, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_347,
     author = {Dahirel, Maxime and Bertin, Aline and Calcagno, Vincent and Duraj, Camille and Fellous, Simon and Groussier, G\'eraldine and Lombaert, Eric and Mailleret, Ludovic and Marchand, Ana\"el and Vercken, Elodie},
     title = {Landscape connectivity alters the evolution of density-dependent dispersal during pushed range expansions},
     journal = {Peer Community Journal},
     eid = {e114},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.347},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.347/}
}
TY  - JOUR
AU  - Dahirel, Maxime
AU  - Bertin, Aline
AU  - Calcagno, Vincent
AU  - Duraj, Camille
AU  - Fellous, Simon
AU  - Groussier, Géraldine
AU  - Lombaert, Eric
AU  - Mailleret, Ludovic
AU  - Marchand, Anaël
AU  - Vercken, Elodie
TI  - Landscape connectivity alters the evolution of density-dependent dispersal during pushed range expansions
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.347/
DO  - 10.24072/pcjournal.347
LA  - en
ID  - 10_24072_pcjournal_347
ER  - 
%0 Journal Article
%A Dahirel, Maxime
%A Bertin, Aline
%A Calcagno, Vincent
%A Duraj, Camille
%A Fellous, Simon
%A Groussier, Géraldine
%A Lombaert, Eric
%A Mailleret, Ludovic
%A Marchand, Anaël
%A Vercken, Elodie
%T Landscape connectivity alters the evolution of density-dependent dispersal during pushed range expansions
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.347/
%R 10.24072/pcjournal.347
%G en
%F 10_24072_pcjournal_347
Dahirel, Maxime; Bertin, Aline; Calcagno, Vincent; Duraj, Camille; Fellous, Simon; Groussier, Géraldine; Lombaert, Eric; Mailleret, Ludovic; Marchand, Anaël; Vercken, Elodie. Landscape connectivity alters the evolution of density-dependent dispersal during pushed range expansions. Peer Community Journal, Volume 3 (2023), article  no. e114. doi : 10.24072/pcjournal.347. https://peercommunityjournal.org/articles/10.24072/pcjournal.347/

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.evolbiol.100133

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Allan, C.; Burel, J.-M.; Moore, J.; Blackburn, C.; Linkert, M.; Loynton, S.; MacDonald, D.; Moore, W.; Neves, C.; Patterson, A.; Porter, M.; Tarkowska, A.; Loranger, B.; Avondo, J.; Lagerstedt, I.; Lianas, L.; Leo, S.; Hands, K.; Hay, R.; Patwardhan, A.; Best, C.; Kleywegt, G.; Zanetti, G.; Swedlow, J. OMERO: flexible, model-driven data management for experimental biology, Nature Methods, Volume 9 (2012), pp. 245-253 | DOI

[2] Allee, W.; Bowen, E. Studies in Animal Aggregations: Mass Protection against Colloidal Silver among Goldfishes, Journal of Experimental Zoology, Volume 61 (1932), pp. 185-207 | DOI

[3] Benhamou, S. How to Reliably Estimate the Tortuosity of an Animal's Path, Journal of Theoretical Biology, Volume 229 (2004), pp. 209-220 | DOI

[4] Birzu, G.; Hallatschek, O.; Korolev, K. Fluctuations Uncover a Distinct Class of Traveling Waves, Proceedings of the National Academy of Sciences, Volume 115 (2018), pp. 3645-3654 | DOI

[5] Birzu, G.; Matin, S.; Hallatschek, O.; Korolev, K. Genetic Drift in Range Expansions Is Very Sensitive to Density Dependence in Dispersal and Growth, Ecology Letters, Volume 22 (2019), pp. 1817-1827 | DOI

[6] Bitume, E. V.; Bonte, D.; Ronce, O.; Olivieri, I.; Nieberding, C. M. Dispersal distance is influenced by parental and grand-parental density, Proceedings of the Royal Society B: Biological Sciences, Volume 281 (2014) no. 1790 | DOI

[7] Bonte, D.; Dahirel, M. Dispersal: a central and independent trait in life history, Oikos, Volume 126 (2016) no. 4, pp. 472-479 | DOI

[8] Bowler, D.; Benton, T. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics, Biological Reviews, Volume 80 (2005), pp. 205-225 | DOI

[9] Branson, K.; Robie, A.; Bender, J.; Perona, P.; Dickinson, M. High-Throughput Ethomics in Large Groups of Drosophila, Nature Methods, Volume 6 (2009), pp. 451-457 | DOI

[10] Burton, O.; Phillips, B.; Travis, J. Trade-Offs and the Evolution of Life-Histories during Range Expansion, Ecology Letters, Volume 13 (2010), pp. 1210-1220 | DOI

[11] Bürkner, P.-C. Brms: An R Package for Bayesian Multilevel Models Using Stan, Journal of Statistical Software, Volume 80 (2017), pp. 1-28 | DOI

[12] Carpenter, B.; Gelman, A.; Hoffman, M.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A Probabilistic Programming Language, Journal of Statistical Software, Volume 76 (2017), pp. 1-32 | DOI

[13] Chuang, A.; Peterson, C. Expanding Population Edges: Theories, Traits, and Trade-Offs, Global Change Biology, Volume 22 (2016), pp. 494-512 | DOI

[14] Clutton-Brock, T.; Harvey, P. Primate ecology and social organization, Journal of Zoology, Volume 183 (1977), pp. 1-39 | DOI

[15] Corrigan, J.; Laing, J.; Zubricky, J. Effects of Parasitoid to Host Ratio and Time of Day of Parasitism on Development and Emergence of Trichogramma Minutum (Hymenoptera: Trichogrammatidae) Parasitizing Eggs of Ephestia Kuehniella (Lepidoptera: Pyralidae, Annals of the Entomological Society of America, Volume 88 (1995), pp. 773-780 | DOI

[16] Cote, J.; Brodin, T.; Fogarty, S.; Sih, A. Non-Random Dispersal Mediates Invader Impacts on the Invertebrate Community, Journal of Animal Ecology, Volume 86 (2017), pp. 1298-1307 | DOI

[17] Courchamp, F.; Berec, L.; Gascoigne, J. Allee Effects in Ecology and Conservation, Oxford University Press, 2008 | DOI

[18] Cwynar, L.; MacDonald, G. Geographical Variation of Lodgepole Pine in Relation to Population History, The American Naturalist, Volume 129 (1987), pp. 463-469 | DOI

[19] Dahirel, M. Mdahirel/Pushed-Pulled-2020-Phenotype: data and code for “Landscape connectivity alters the evolution of density-dependent dispersal during pushed range expansions.”, Zenodo, ver. 1,2, 2021 | DOI

[20] Dahirel, M.; Bertin, A.; Haond, M.; Blin, A.; Lombaert, E.; Calcagno, V.; Fellous, S.; Mailleret, L.; Malausa, T.; Vercken, E. Shifts from pulled to pushed range expansions caused by reduction of landscape connectivity, Oikos, Volume 130 (2021) no. 5, pp. 708-724 | DOI

[21] Deforet, M.; Carmona-Fontaine, C.; Korolev, K.; Xavier, J. Evolution at the Edge of Expanding Populations, The American Naturalist, Volume 194 (2019), pp. 291-305 | DOI

[22] Des Roches, S.; Post, D. M.; Turley, N. E.; Bailey, J. K.; Hendry, A. P.; Kinnison, M. T.; Schweitzer, J. A.; Palkovacs, E. P. The ecological importance of intraspecific variation, Nature Ecology & Evolution, Volume 2 (2017) no. 1, pp. 57-64 | DOI

[23] Durocher-Granger, L.; Martel, V.; Boivin, G. Gamete number and size correlate with adult size in the egg parasitoid Trichogramma euproctidis, Entomologia Experimentalis et Applicata, Volume 140 (2011), pp. 262-268 | DOI

[24] Erm, P.; Phillips, B. Evolution Transforms Pushed Waves into Pulled Waves, The American Naturalist, Volume 195 (2020), pp. 87-99 | DOI

[25] Fellous, S.; Angot, G.; Orsucci, M.; Migeon, A.; Auger, P.; Olivieri, I.; Navajas, M. Combining Experimental Evolution and Field Population Assays to Study the Evolution of Host Range Breadth, Journal of Evolutionary Biology, Volume 27 (2014), pp. 911-919 | DOI

[26] Fragata, I. Phenotypic Evolution during Range Expansions Is Contingent on Connectivity and Density Dependence, Peer Community In Evolutionary Biology (2021), p. 100133 | DOI

[27] Fronhofer, E.; Gut, S.; Altermatt, F. Evolution of Density-Dependent Movement during Experimental Range Expansions, Journal of Evolutionary Biology, Volume 30 (2017), pp. 2165-2176 | DOI

[28] Fronhofer, E.; Legrand, D.; Altermatt, F.; Ansart, A.; Blanchet, S.; Bonte, D.; Chaine, A.; Dahirel, M.; Laender, F.; Raedt, J.; di, G. L.; Jacob, S.; Kaltz, O.; Laurent, E.; Little, C.; Madec, L.; Manzi, F.; Masier, S.; Pellerin, F.; Pennekamp, F.; Schtickzelle, N.; Therry, L.; Vong, A.; Winandy, L.; Cote, J. Bottom-up and Top-down Control of Dispersal across Major Organismal Groups, Nature Ecology & Evolution, Volume 2 (2018), pp. 1859-1863 | DOI

[29] Gabry, J.; Simpson, D.; Vehtari, A.; Betancourt, M.; Gelman, A. Visualization in Bayesian Workflow, Journal of the Royal Statistical Society Series A: Statistics in Society, Volume 182 (2019) no. 2, pp. 389-402 | DOI

[30] Gandhi, S. R.; Korolev, K. S.; Gore, J. Cooperation mitigates diversity loss in a spatially expanding microbial population, Proceedings of the National Academy of Sciences, Volume 116 (2019) no. 47, pp. 23582-23587 | DOI

[31] Govindan, B. N.; Feng, Z.; DeWoody, Y. D.; Swihart, R. K. Intermediate disturbance in experimental landscapes improves persistence of beetle metapopulations, Ecology, Volume 96 (2015) no. 3, pp. 728-736 | DOI

[32] Gralka, M.; Hallatschek, O. Environmental Heterogeneity Can Tip the Population Genetics of Range Expansions, eLife, Volume 8 (2019), p. e44359 | DOI

[33] Gregory, S. D.; Bradshaw, C. J. A.; Brook, B. W.; Courchamp, F. Limited evidence for the demographic Allee effect from numerous species across taxa, Ecology, Volume 91 (2010) no. 7, pp. 2151-2161 | DOI

[34] Hadfield, J. D.; Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters, Journal of Evolutionary Biology, Volume 23 (2010) no. 3, pp. 494-508 | DOI

[35] Harman, R. R.; Goddard, J.; Shivaji, R.; Cronin, J. T. Frequency of Occurrence and Population-Dynamic Consequences of Different Forms of Density-Dependent Emigration, The American Naturalist, Volume 195 (2020) no. 5, pp. 851-867 | DOI

[36] Hunter, M.; Krishnan, N.; Liu, T.; Möbius, W.; Fusco, D. Virus-Host Interactions Shape Viral Dispersal Giving Rise to Distinct Classes of Traveling Waves in Spatial Expansions, Physical Review X, Volume 11 (2021) no. 2 | DOI

[37] Jacob, S.; Chaine, A. S.; Huet, M.; Clobert, J.; Legrand, D. Variability in Dispersal Syndromes Is a Key Driver of Metapopulation Dynamics in Experimental Microcosms, The American Naturalist, Volume 194 (2019) no. 5, pp. 613-626 | DOI

[38] Kay, M. Tidybayes: Tidy Data and Geoms for Bayesian Models, Zenodo, 2023 | DOI

[39] Kun, Á.; Scheuring, I. The evolution of density‐dependent dispersal in a noisy spatial population model, Oikos, Volume 115 (2006) no. 2, pp. 308-320 | DOI

[40] Lenoir, J.; Bertrand, R.; Comte, L.; Bourgeaud, L.; Hattab, T.; Murienne, J.; Grenouillet, G. Species better track climate warming in the oceans than on land, Nature Ecology & Evolution, Volume 4 (2020) no. 8, pp. 1044-1059 | DOI

[41] Lewis, M. A.; Petrovskii, S. V.; Potts, J. R. The Mathematics Behind Biological Invasions, Interdisciplinary Applied Mathematics, Springer International Publishing, Cham, 2016 | DOI

[42] Little, C. J.; Fronhofer, E. A.; Altermatt, F. Dispersal syndromes can impact ecosystem functioning in spatially structured freshwater populations, Biology Letters, Volume 15 (2019) no. 3 | DOI

[43] Lutscher, F.; Musgrave, J. A. Behavioral responses to resource heterogeneity can accelerate biological invasions, Ecology, Volume 98 (2017) no. 5, pp. 1229-1238 | DOI

[44] Matthysen, E. Density‐dependent dispersal in birds and mammals, Ecography, Volume 28 (2005) no. 3, pp. 403-416 | DOI

[45] Matthysen, E. Multicausality of dispersal: a review, Dispersal Ecology and Evolution, Oxford University Press, 2012, pp. 3-18 | DOI

[46] McElreath, R. Statistical Rethinking. A Bayesian course with examples in R and Stan, Chapman and Hall/CRC, 2020 | DOI

[47] McLean, D. J.; Skowron Volponi, M. A. trajr: An R package for characterisation of animal trajectories, Ethology, Volume 124 (2018) no. 6, pp. 440-448 | DOI

[48] Merwin, A. C. Flight capacity increases then declines from the core to the margins of an invasive species' range, Biology Letters, Volume 15 (2019) no. 11 | DOI

[49] Miller, T. E. X.; Angert, A. L.; Brown, C. D.; Lee‐Yaw, J. A.; Lewis, M.; Lutscher, F.; Marculis, N. G.; Melbourne, B. A.; Shaw, A. K.; Szűcs, M.; Tabares, O.; Usui, T.; Weiss‐Lehman, C.; Williams, J. L. Eco‐evolutionary dynamics of range expansion, Ecology, Volume 101 (2020) no. 10 | DOI

[50] Mishra, A.; Chakraborty, P. P.; Dey, S. Dispersal Evolution Diminishes the Negative Density Dependence in Dispersal, Evolution, Volume 74 (2020) no. 9, pp. 2149-2157 | DOI

[51] Morel‐Journel, T.; Girod, P.; Mailleret, L.; Auguste, A.; Blin, A.; Vercken, E. The highs and lows of dispersal: how connectivity and initial population size jointly shape establishment dynamics in discrete landscapes, Oikos, Volume 125 (2015) no. 6, pp. 769-777 | DOI

[52] Ochocki, B. M.; Saltz, J. B.; Miller, T. E. X. Demography-Dispersal Trait Correlations Modify the Eco-Evolutionary Dynamics of Range Expansion, The American Naturalist, Volume 195 (2020) no. 2, pp. 231-246 | DOI

[53] Pachepsky, E.; Levine, J. M. Density Dependence Slows Invader Spread in Fragmented Landscapes, The American Naturalist, Volume 177 (2011) no. 1, pp. 18-28 | DOI

[54] Pedersen, T. Patchwork: The Composer of Plots, 2019 (https://cran.r-project.org/package=patchwork)

[55] Perkins, A. T.; Phillips, B. L.; Baskett, M. L.; Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species, Ecology Letters, Volume 16 (2013) no. 8, pp. 1079-1087 | DOI

[56] Phillips, B. Evolutionary Processes Make Invasion Speed Difficult to Predict, Biological Invasions, Volume 17 (2015), pp. 1949-1960 | DOI

[57] Phillips, B. L.; Perkins, T. A. Spatial sorting as the spatial analogue of natural selection, Theoretical Ecology, Volume 12 (2019) no. 2, pp. 155-163 | DOI

[58] Poethke, H. J.; Hovestadt, T. Evolution of density–and patch–size–dependent dispersal rates, Proceedings of the Royal Society of London. Series B: Biological Sciences, Volume 269 (2002) no. 1491, pp. 637-645 | DOI

[59] R. Core Team R: A Language and Environment for Statistical Computing, 2021 (https://www.r-project.org/)

[60] Raffard, A.; Santoul, F.; Cucherousset, J.; Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta‐analysis, Biological Reviews, Volume 94 (2018) no. 2, pp. 648-661 | DOI

[61] Renault, D.; Laparie, M.; McCauley, S. J.; Bonte, D. Environmental Adaptations, Ecological Filtering, and Dispersal Central to Insect Invasions, Annual Review of Entomology, Volume 63 (2018) no. 1, pp. 345-368 | DOI

[62] Rodrigues, A. M. M.; Johnstone, R. A. Evolution of positive and negative density-dependent dispersal, Proceedings of the Royal Society B: Biological Sciences, Volume 281 (2014) no. 1791 | DOI

[63] Ronce, O.; Clobert, J. Dispersal syndromes, Dispersal Ecology and Evolution, Oxford University Press, 2012, pp. 119-138 | DOI

[64] Roques, L.; Garnier, J.; Hamel, F.; Klein, E. K. Allee effect promotes diversity in traveling waves of colonization, Proceedings of the National Academy of Sciences, Volume 109 (2012) no. 23, pp. 8828-8833 | DOI

[65] Schreiber, S. J.; Beckman, N. G. Individual variation in dispersal and fecundity increases rates of spatial spread, AoB Plants, Volume 12 (2020) no. 3 | DOI

[66] Segoli, M.; Wajnberg, E. The Combined Effect of Host and Food Availability on Optimized Parasitoid Life-history Traits Based on a Three-dimensional Trade-off Surface, Journal of Evolutionary Biology, Volume 33 (2020), pp. 850-857 | DOI

[67] Shine, R.; Brown, G. P.; Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time, Proceedings of the National Academy of Sciences, Volume 108 (2011) no. 14, pp. 5708-5711 | DOI

[68] Sibly, R. M.; Hone, J. Population growth rate and its determinants: an overview, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, Volume 357 (2002) no. 1425, pp. 1153-1170 | DOI

[69] Simmons, A. D.; Thomas, C. D. Changes in Dispersal during Species’ Range Expansions, The American Naturalist, Volume 164 (2004) no. 3, pp. 378-395 | DOI

[70] St-Onge, M.; Cormier, D.; Todorova, S.; Lucas, É. Comparison of Ephestia kuehniella eggs sterilization methods for Trichogramma rearing, Biological Control, Volume 70 (2014), pp. 73-77 | DOI

[71] Stokes, A. On two types of moving front in quasilinear diffusion, Mathematical Biosciences, Volume 31 (1976) no. 3-4, pp. 307-315 | DOI

[72] Travis, J.; Dytham, C. Dispersal Evolution during Invasions, Evolutionary Ecology Research, Volume 4 (2002), pp. 1119-1129

[73] Travis, J. M. J.; Murrell, D. J.; Dytham, C. The evolution of density–dependent dispersal, Proceedings of the Royal Society of London. Series B: Biological Sciences, Volume 266 (1999) no. 1431, pp. 1837-1842 | DOI

[74] Travis, J. M.; Mustin, K.; Benton, T. G.; Dytham, C. Accelerating invasion rates result from the evolution of density-dependent dispersal, Journal of Theoretical Biology, Volume 259 (2009) no. 1, pp. 151-158 | DOI

[75] Urquhart, C. A.; Williams, J. L. Trait correlations and landscape fragmentation jointly alter expansion speed via evolution at the leading edge in simulated range expansions, Theoretical Ecology, Volume 14 (2021) no. 3, pp. 381-394 | DOI

[76] Vamosi, S. M. Interactive effects of larval host and competition on adult fitness: an experimental test with seed beetles (Coleoptera: Bruchidae), Functional Ecology, Volume 19 (2005) no. 5, pp. 859-864 | DOI

[77] Van Alphen, J. J. M.; Visser, M. E. Superparasitism as an Adaptive Strategy for Insect Parasitoids, Annual Review of Entomology, Volume 35 (1990) no. 1, pp. 59-79 | DOI

[78] Van Petegem, K.; Moerman, F.; Dahirel, M.; Fronhofer, E. A.; Vandegehuchte, M. L.; Van Leeuwen, T.; Wybouw, N.; Stoks, R.; Bonte, D. Kin competition accelerates experimental range expansion in an arthropod herbivore, Ecology Letters, Volume 21 (2017) no. 2, pp. 225-234 | DOI

[79] Vehtari, A.; Gelman, A.; Simpson, D.; Carpenter, B.; Bürkner, P.-C. Rank-Normalization, Folding, and Localization: An Improved R for Assessing Convergence of MCMC (with Discussion), Bayesian Analysis, Volume 16 (2021) no. 2 | DOI

[80] Violle, C.; Enquist, B. J.; McGill, B. J.; Jiang, L.; Albert, C. H.; Hulshof, C.; Jung, V.; Messier, J. The return of the variance: intraspecific variability in community ecology, Trends in Ecology & Evolution, Volume 27 (2012) no. 4, pp. 244-252 | DOI

[81] Wajnberg, E.; Fauvergue, X.; Pons, O. Patch leaving decision rules and the Marginal Value Theorem: an experimental analysis and a simulation model, Behavioral Ecology, Volume 11 (2000) no. 6, pp. 577-586 | DOI

[82] Weiss-Lehman, C.; Hufbauer, R. A.; Melbourne, B. A. Rapid trait evolution drives increased speed and variance in experimental range expansions, Nature Communications, Volume 8 (2017) no. 1 | DOI

[83] Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; Kuhn, M.; Pedersen, T.; Miller, E.; Bache, S.; Müller, K.; Ooms, J.; Robinson, D.; Seidel, D.; Spinu, V.; Takahashi, K.; Vaughan, D.; Wilke, C.; Woo, K.; Yutani, H. Welcome to the Tidyverse, Journal of Open Source Software, Volume 4 (2019) no. 43 | DOI

[84] Williams, J.; Hufbauer, R.; Miller, T. How Evolution Modifies the Variability of Range Expansion, Trends in Ecology & Evolution, Volume 34 (2019), pp. 903-913 | DOI

[85] Williams, J. L.; Kendall, B. E.; Levine, J. M. Rapid evolution accelerates plant population spread in fragmented experimental landscapes, Science, Volume 353 (2016) no. 6298, pp. 482-485 | DOI

[86] Williams, J. L.; Levine, J. M. Experimental evidence that density dependence strongly influences plant invasions through fragmented landscapes, Ecology, Volume 99 (2018) no. 4, pp. 876-884 | DOI

[87] Williams, J. L.; Snyder, R. E.; Levine, J. M. The Influence of Evolution on Population Spread through Patchy Landscapes, The American Naturalist, Volume 188 (2016) no. 1, pp. 15-26 | DOI

[88] Wolz, M.; Klockmann, M.; Schmitz, T.; Pekár, S.; Bonte, D.; Uhl, G. Dispersal and life-history traits in a spider with rapid range expansion, Movement Ecology, Volume 8 (2020) no. 1 | DOI

[89] Yanagi, S.; Saeki, Y.; Tuda, M. Adaptive egg size plasticity for larval competition and its limits in the seed beetle Callosobruchus chinensis, Entomologia Experimentalis et Applicata, Volume 148 (2013) no. 2, pp. 182-187 | DOI

Cited by Sources:

block.super