Section: Paleontology
Topic: Paleontology

What do ossification sequences tell us about the origin of extant amphibians?

Corresponding author(s): Laurin, Michel (michel.laurin@mnhn.fr)

10.24072/pcjournal.89 - Peer Community Journal, Volume 2 (2022), article no. e12.

Get full text PDF Peer reviewed and recommended by PCI
article image

The origin of extant amphibians has been studied using several sources of data and methods, including phylogenetic analyses of morphological data, molecular dating, stratigraphic data, and integration of ossification sequence data, but a consensus about their affinities with other Paleozoic tetrapods has failed to emerge. We have compiled five datasets to assess the relative support for six competing hypotheses about the origin of extant amphibians: a monophyletic origin among temnospondyls, a monophyletic origin among lepospondyls, a diphyletic origin among both temnospondyls and lepospondyls, a diphyletic origin among temnospondyls alone, and two variants of a triphyletic origin, in which anurans and urodeles come from different temnospondyl taxa while caecilians come from lepospondyls and are either closer to anurans and urodeles or to amniotes. Our datasets comprise ossification sequences of up to 107 terminal taxa and up to eight cranial bones, and up to 65 terminal taxa and up to seven appendicular bones, respectively. Among extinct taxa, only two or three temnospondyl can be analyzed simultaneously for cranial data, but this is not an insuperable problem because each of the six tested hypotheses implies a different position of temnospondyls and caecilians relative to other sampled taxa. For appendicular data, more extinct taxa can be analyzed, including some lepospondyls and the finned tetrapodomorph Eusthenopteron, in addition to temnospondyls. The data are analyzed through maximum likelihood, and the AICc (corrected Akaike Information Criterion) weights of the six hypotheses allow us to assess their relative support. By an unexpectedly large margin, our analyses of the cranial data support a monophyletic origin among lepospondyls; a monophyletic origin among temnospondyls, the current near-consensus, is a distant second. All other hypotheses are exceedingly unlikely according to our data. Surprisingly, analysis of the appendicular data supports triphyly of extant amphibians within a clade that unites lepospondyls and temnospondyls, contrary to all phylogenies based on molecular data and recent trees based on paleontological data, but this conclusion is not very robust.

Published online:
DOI: 10.24072/pcjournal.89
Type: Research article

Laurin, Michel 1; Lapauze, Océane 1; Marjanović, David 2

1 CR2P (Centre de Recherche sur la Paléodiversité et les Paléoenvironnements; UMR 7207), CNRS/MNHN/Sorbonne Université, Muséum National d’Histoire Naturelle, Département Histoire de la Terre – Paris, France
2 Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_89,
     author = {Laurin, Michel and Lapauze, Oc\'eane and Marjanovi\'c, David},
     title = {What do ossification sequences tell us about the origin of extant amphibians?},
     journal = {Peer Community Journal},
     eid = {e12},
     publisher = {Peer Community In},
     volume = {2},
     year = {2022},
     doi = {10.24072/pcjournal.89},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.89/}
}
TY  - JOUR
AU  - Laurin, Michel
AU  - Lapauze, Océane
AU  - Marjanović, David
TI  - What do ossification sequences tell us about the origin of extant amphibians?
JO  - Peer Community Journal
PY  - 2022
VL  - 2
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.89/
DO  - 10.24072/pcjournal.89
ID  - 10_24072_pcjournal_89
ER  - 
%0 Journal Article
%A Laurin, Michel
%A Lapauze, Océane
%A Marjanović, David
%T What do ossification sequences tell us about the origin of extant amphibians?
%J Peer Community Journal
%D 2022
%V 2
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.89/
%R 10.24072/pcjournal.89
%F 10_24072_pcjournal_89
Laurin, Michel; Lapauze, Océane; Marjanović, David. What do ossification sequences tell us about the origin of extant amphibians?. Peer Community Journal, Volume 2 (2022), article  no. e12. doi : 10.24072/pcjournal.89. https://peercommunityjournal.org/articles/10.24072/pcjournal.89/

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.paleo.100002

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Anderson, D. R.; Burnham, K. P. Avoiding Pitfalls When Using Information-Theoretic Methods, The Journal of Wildlife Management, Volume 66 (2002) no. 3 | DOI

[2] Anderson, J. S.; Carroll, R. L.; Rowe, T. B. New information on Lethiscus stocki (Tetrapoda: Lepospondyli: Aistopoda) from high-resolution computed tomography and a phylogenetic analysis of Aistopoda, Canadian Journal of Earth Sciences, Volume 40 (2003) no. 8, pp. 1071-1083 | DOI

[3] Anderson, J. Incorporating ontogeny into the matrix: a phylogenetic evaluation of developmental evidence for the origin of modern amphibians In: In: Major Transitions in Vertebrate Evolution. Ed. by Anderson JS and Sues HD, Indiana University Press, Bloomington, Indiana, USA (2007), pp. 182-227

[4] Anderson, J. S.; Reisz, R. R.; Scott, D.; Fröbisch, N. B.; Sumida, S. S. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders, Nature, Volume 453 (2008) no. 7194, pp. 515-518 | DOI

[5] Berv, J. S.; Field, D. J. Genomic Signature of an Avian Lilliput Effect across the K-Pg Extinction, Systematic Biology, Volume 67 (2017) no. 1, pp. 1-13 | DOI

[6] Bokma, F.; Godinot, M.; Maridet, O.; Ladevèze, S.; Costeur, L.; Solé, F.; Gheerbrant, E.; Peigné, S.; Jacques, F.; Laurin, M. Testing for Depéret's Rule (Body Size Increase) in Mammals using Combined Extinct and Extant Data, Systematic Biology, Volume 65 (2015) no. 1, pp. 98-108 | DOI

[7] Bolt, J. R. Lissamphibian Origins: Possible Protolissamphibian from the Lower Permian of Oklahoma, Science, Volume 166 (1969) no. 3907, pp. 888-891 | DOI

[8] Bossuyt, F.; Roelants, K. Frogs and toads (Anura) In: In: The Timetree of Life. Ed. by Hedges SB and Kumar S , Oxford University Press, New York, USA (2009), pp. 357-364

[9] Brandley, M. C.; Schmitz, A.; Reeder, T. W. Partitioned Bayesian Analyses, Partition Choice, and the Phylogenetic Relationships of Scincid Lizards, Systematic Biology, Volume 54 (2005) no. 3, pp. 373-390 | DOI

[10] Carpenter, D. K.; Falcon-Lang, H. J.; Benton, M. J.; Grey, M. Early Pennsylvanian (Langsettian) fish assemblages from the Joggins Formation, Canada, and their implications for palaeoecology and palaeogeography, Palaeontology, Volume 58 (2015) no. 4, pp. 661-690 | DOI

[11] Carroll, R. L. The origin and early radiation of terrestrial vertebrates, Journal of Paleontology, Volume 75 (2001) no. 6, pp. 1202-1213 | DOI

[12] Carroll, R. L. The Palaeozoic Ancestry of Salamanders, Frogs and Caecilians, Zoological Journal of the Linnean Society, Volume 150 (2007) no. suppl_1, pp. 1-140 | DOI

[13] Carroll, R. L.; Chorn, J. Vertebral Development in the Oldest Microsaur and the Problem of “Lepospondyl” Relationships, Journal of Vertebrate Paleontology, Volume 15 (1995) no. 1, pp. 37-56 | DOI

[14] Carroll, R. L.; Currie, P. J. Microsaurs as possible apodan ancestors, Zoological Journal of the Linnean Society, Volume 57 (1975) no. 3, pp. 229-247 | DOI

[15] Carroll, R. L.; Holmes, R. The skull and jaw musculature as guides to the ancestry of salamanders, Zoological Journal of the Linnean Society, Volume 68 (1980) no. 1, pp. 1-40 | DOI

[16] Carroll, R.; Kuntz, A.; Albright, K. Vertebral development and amphibian evolution, Evolution & Development, Volume 1 (1999) no. 1, pp. 36-48 | DOI

[17] Clack, J. A.; Ruta, M.; Milner, A. R.; Marshall, J. E. A.; Smithson, T. R.; Smithson, K. Z. Acherontiscus caledoniae : the earliest heterodont and durophagous tetrapod, Royal Society Open Science, Volume 6 (2019) no. 5 | DOI

[18] Cloutier, R. The fossil record of fish ontogenies: Insights into developmental patterns and processes, Seminars in Cell & Developmental Biology, Volume 21 (2010) no. 4, pp. 400-413 | DOI

[19] Cope, E. D. On the Intercentrum of the Terrestrial Vertebrata, Transactions of the American Philosophical Society, Volume 16 (1888) no. 2 | DOI

[20] Cote, S.; Carroll, R.; Cloutier, R.; Bar-Sagi, L. Vertebral development in the Devonian Sarcopterygian fishEusthenopteron foordiand the polarity of vertebral evolution in non-amniote tetrapods, Journal of Vertebrate Paleontology, Volume 22 (2002) no. 3, pp. 487-502 | DOI

[21] Criswell, K. E. The comparative osteology and phylogenetic relationships of African and South American lungfishes (Sarcopterygii: Dipnoi), Zoological Journal of the Linnean Society, Volume 174 (2015) no. 4, pp. 801-858 | DOI

[22] Danto, M.; Witzmann, F.; Kamenz, S. K.; Fröbisch, N. B. How informative is vertebral development for the origin of lissamphibians?, Journal of Zoology, Volume 307 (2019) no. 4, pp. 292-305 | DOI

[23] Davies, T. W.; Bell, M. A.; Goswami, A.; Halliday, T. J. D. Completeness of the eutherian mammal fossil record and implications for reconstructing mammal evolution through the Cretaceous/Paleogene mass extinction, Paleobiology, Volume 43 (2017) no. 4, pp. 521-536 | DOI

[24] Eldredge, N.; Gould, S. Punctuated equilibria: an alternative to phyletic gradualism. In: Models in Paleobiology. Ed. by Schopf TJM, Freeman, Cooper & Company, San Francisco, USA (1972), pp. 82-115

[25] Feng, Y.-J.; Blackburn, D. C.; Liang, D.; Hillis, D. M.; Wake, D. B.; Cannatella, D. C.; Zhang, P. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary, Proceedings of the National Academy of Sciences, Volume 114 (2017) no. 29 | DOI

[26] Fröbisch, N. B.; Bickelmann, C.; Olori, J. C.; Witzmann, F. Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development, Nature, Volume 527 (2015) no. 7577, pp. 231-234 | DOI

[27] Fröbisch, N. B.; Carroll, R. L.; Schoch, R. R. Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development, Evolution & Development, Volume 9 (2007) no. 1, pp. 69-75 | DOI

[28] Germain, D.; Laurin, M. Evolution of ossification sequences in salamanders and urodele origins assessed through event-pairing and new methods, Evolution & Development, Volume 11 (2009) no. 2, pp. 170-190 | DOI

[29] Glienke, S. Two new species of the genusBatropetes(Tetrapoda, Lepospondyli) from the Central European Rotliegend (basal Permian) in Germany, Journal of Vertebrate Paleontology, Volume 35 (2015) no. 2 | DOI

[30] Gonzalez, J.; Düttmann, H.; Wink, M. Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae, Journal of Zoology, Volume 279 (2009) no. 3, pp. 310-318 | DOI

[31] Halliday, T. J. D.; Upchurch, P.; Goswami, A. Resolving the relationships of Paleocene placental mammals, Biological Reviews, Volume 92 (2017) no. 1, pp. 521-550 | DOI

[32] Halliday, T. J. D.; Upchurch, P.; Goswami, A. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction, Proceedings of the Royal Society B: Biological Sciences, Volume 283 (2016) no. 1833 | DOI

[33] Harrington, S. M.; Harrison, L. B.; Sheil, C. A. Ossification sequence heterochrony among amphibians, Evolution & Development, Volume 15 (2013) no. 5, pp. 344-364 | DOI

[34] Harrison, L. B.; Larsson, H. C. E. Estimating Evolution of Temporal Sequence Changes: A Practical Approach to Inferring Ancestral Developmental Sequences and Sequence Heterochrony, Systematic Biology, Volume 57 (2008) no. 3, pp. 378-387 | DOI

[35] Hugall, A. F.; Foster, R.; Lee, M. S. Y. Calibration Choice, Rate Smoothing, and the Pattern of Tetrapod Diversification According to the Long Nuclear Gene RAG-1, Systematic Biology, Volume 56 (2007) no. 4, pp. 543-563 | DOI

[36] Hugi, J.; Hutchinson, M. N.; Koyabu, D.; Sánchez-Villagra, M. R. Heterochronic shifts in the ossification sequences of surface- and subsurface-dwelling skinks are correlated with the degree of limb reduction, Zoology, Volume 115 (2012) no. 3, pp. 188-198 | DOI

[37] Irisarri, I.; Baurain, D.; Brinkmann, H.; Delsuc, F.; Sire, J.-Y.; Kupfer, A.; Petersen, J.; Jarek, M.; Meyer, A.; Vences, M.; Philippe, H. Phylotranscriptomic consolidation of the jawed vertebrate timetree, Nature Ecology & Evolution, Volume 1 (2017) no. 9, pp. 1370-1378 | DOI

[38] Jeffery, J. E.; Bininda-Emonds, O. R. P.; Coates, M. I.; Richardson, M. K. A New Technique for Identifying Sequence Heterochrony, Systematic Biology, Volume 54 (2005) no. 2, pp. 230-240 | DOI

[39] Jetz, W.; Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life, Nature Ecology & Evolution, Volume 2 (2018) no. 5, pp. 850-858 | DOI

[40] Josse, S.; Moreau, T.; Laurin, M. Stratigraphic tools for Mesquite. Version 1.0. URL: http://mesquiteproject.org/packages/stratigraphicTools/, (2006)

[41] Koyabu, D.; Werneburg, I.; Morimoto, N.; Zollikofer, C. P. E.; Forasiepi, A. M.; Endo, H.; Kimura, J.; Ohdachi, S. D.; Truong Son, N.; Sánchez-Villagra, M. R. Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size, Nature Communications, Volume 5 (2014) no. 1 | DOI

[42] Kumar, A.; Gates, P. B.; Czarkwiani, A.; Brockes, J. P. An orphan gene is necessary for preaxial digit formation during salamander limb development, Nature Communications, Volume 6 (2015) no. 1 | DOI

[43] Laurin, M. The importance of global parsimony and historical bias in understanding tetrapod evolution. Part I. Systematics, middle ear evolution and jaw suspension, Annales des Sciences Naturelles - Zoologie et Biologie Animale, Volume 19 (1998) no. 1, pp. 1-42 | DOI

[44] Laurin, M. The Evolution of Body Size, Cope's Rule and the Origin of Amniotes, Systematic Biology, Volume 53 (2004) no. 4, pp. 594-622 | DOI

[45] Laurin, M. Assessment of modularity in the urodele skull: An exploratory analysis using ossification sequence data, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, Volume 322 (2014) no. 8, pp. 567-585 | DOI

[46] Laurin, M.; Germain, D. Developmental Characters in Phylogenetic Inference and Their Absolute Timing Information, Systematic Biology, Volume 60 (2011) no. 5, pp. 630-644 | DOI

[47] Laurin, M.; Piñeiro, G. H. A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes, Frontiers in Earth Science, Volume 5 (2017) | DOI

[48] Leblanc, J.; Cloutier, R. Developmental modularity and saltatory ontogeny in the Late Devonian osteolepiform Eusthenopteron foordi . In: Leblanc J. Précisions sur l’anatomie de l’ostéolépiforme Eu-sthenopteron foordi du Dévonien supérieur de Miguasha, Québec. Rimouski, Quebec, Canada: Mémoire de maîtrise (MSc thesis), Université du Québec, pp. 32–84. eprint: http://semaphore.uqar.ca/id/eprint/283, (2005)

[49] Lecompte, E.; Aplin, K.; Denys, C.; Catzeflis, F.; Chades, M.; Chevret, P. Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily, BMC Evolutionary Biology, Volume 8 (2008) no. 1 | DOI

[50] Lee, C.; Blay, S.; Mooers, A. Ø.; Singh, A.; Oakley, T. H. CoMET: A Mesquite Package for Comparing Models of Continuous Character Evolution on Phylogenies, Evolutionary Bioinformatics, Volume 2 (2006) | DOI

[51] Lu, T.; Zhu, M.; Yi, C.; Si, C.; Yang, C.; Chen, H. Complete mitochondrial genome of the gray red-backed vole (Myodes rufocanus) and a complete estimate of the phylogenetic relationships in Cricetidae, Mitochondrial DNA Part A, Volume 28 (2017) no. 1, pp. 62-64 | DOI

[52] Maddin, H. C.; Jenkins, F. A.; Anderson, J. S. The Braincase of Eocaecilia micropodia (Lissamphibia, Gymnophiona) and the Origin of Caecilians, PLoS ONE, Volume 7 (2012) no. 12 | DOI

[53] Maddison, W. P. Squared-Change Parsimony Reconstructions of Ancestral States for Continuous-Valued Characters on a Phylogenetic Tree, Systematic Biology, Volume 40 (1991) no. 3, pp. 304-314 | DOI

[54] Maddison, W. M. D. Mesquite: a modular system for evolutionary analysis. Version 3.6. URL: http://mesquite.wikispaces.com/, (2018)

[55] Mann, A.; Pardo, J. D.; Maddin, H. C. Infernovenator steenae, a new serpentine recumbirostran from the ‘Mazon Creek’ Lagerstätte further clarifies lysorophian origins, Zoological Journal of the Linnean Society, Volume 187 (2019) no. 2, pp. 506-517 | DOI

[56] Marjanović, D.; Laurin, M. Fossils, Molecules, Divergence Times, and the Origin of Lissamphibians, Systematic Biology, Volume 56 (2007) no. 3, pp. 369-388 | DOI

[57] Marjanović, D.; Laurin, M. Assessing Confidence Intervals for Stratigraphic Ranges of Higher Taxa: The Case of Lissamphibia, Acta Palaeontologica Polonica, Volume 53 (2008) no. 3, pp. 413-432 | DOI

[58] Marjanović, D.; Laurin, M. The Origin(s) of Modern Amphibians: A Commentary, Evolutionary Biology, Volume 36 (2009) no. 3, pp. 336-338 | DOI

[59] Marjanović, D.; Laurin, M. The origin(s) of extant amphibians: a review with emphasis on the “lepospondyl hypothesis”, Geodiversitas, Volume 35 (2013) no. 1, pp. 207-272 | DOI

[60] Marjanović, D.; Laurin, M. An updated paleontological timetree of lissamphibians, with comments on the anatomy of Jurassic crown-group salamanders (Urodela), Historical Biology, Volume 26 (2014) no. 4, pp. 535-550 | DOI

[61] Marjanović, D.; Laurin, M. Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix, PeerJ, Volume 6 (2019) | DOI

[62] Maxwell, E. E.; Harrison, L. B.; Larsson, H. C. Assessing the phylogenetic utility of sequence heterochrony: evolution of avian ossification sequences as a case study, Zoology, Volume 113 (2010) no. 1, pp. 57-66 | DOI

[63] Meredith, R. W.; Janecka, J. E.; Gatesy, J.; Ryder, O. A.; Fisher, C. A.; Teeling, E. C.; Goodbla, A.; Eizirik, E.; Simao, T. L. L.; Stadler, T.; Rabosky, D. L.; Honeycutt, R. L.; Flynn, J. J.; Ingram, C. M.; Steiner, C.; Williams, T. L.; Robinson, T. J.; Burk-Herrick, A.; Westerman, M.; Ayoub, N. A.; Springer, M. S.; Murphy, W. J. Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification, Science, Volume 334 (2011) no. 6055, pp. 521-524 | DOI

[64] Milner, A. R. The Paleozoic Relatives of Lissamphibians, Herpetological Monographs, Volume 7 (1993) | DOI

[65] Ogg, J.; Ogg, G.; Gradstein FM A Concise Geologic Time Scale: 2016, Elsevier, Amsterdam, The Netherlands, (2016)

[66] Olori JC The evolution of skeletal development in early tetrapods: anatomy and ontogeny of microsaurs (Lepospondyli). PhD thesis. Austin, Texas, USA: University of Texas. eprint: http://hdl.handle.net/2152/ETD-UT-2011-05-3535 ((2011))

[67] Olori, J. C. Ontogenetic sequence reconstruction and sequence polymorphism in extinct taxa: an example using early tetrapods (Tetrapoda: Lepospondyli), Paleobiology, Volume 39 (2013) no. 3, pp. 400-428 | DOI

[68] Olori, J. C. Skeletal Morphogenesis of Microbrachis and Hyloplesion (Tetrapoda: Lepospondyli), and Implications for the Developmental Patterns of Extinct, Early Tetrapods, PLOS ONE, Volume 10 (2015) no. 6 | DOI

[69] Pardo, J.; Carter, A.; Lennie, K.; Sallan, L.; Anderson, J. New μCT data on nectrideans re- veals unappreciated complexities in early tetrapod evolution, Vertebrate Anatomy Morphology Palaeontology, Volume 5 (CSVP 2018 Abstracts) (2018) | DOI

[70] Pardo, J. D.; Small, B. J.; Huttenlocker, A. K. Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia, Proceedings of the National Academy of Sciences, Volume 114 (2017) no. 27 | DOI

[71] Pardo, J. D.; Szostakiwskyj, M.; Ahlberg, P. E.; Anderson, J. S. Hidden morphological diversity among early tetrapods, Nature, Volume 546 (2017) no. 7660, pp. 642-645 | DOI

[72] Parsons, T. S.; Williams, E. E. The teeth of amphibia and their relation to amphibian phylogeny, Journal of Morphology, Volume 110 (1962) no. 3, pp. 375-389 | DOI

[73] Parsons, T. S.; Williams, E. E. The Relationships of the Modern Amphibia: A Re-Examination, The Quarterly Review of Biology, Volume 38 (1963) no. 1, pp. 26-53 | DOI

[74] Pawley, K. The postcranial skeleton of temnospondyls (Tetrapoda: Temnospondyli). PhD thesis. Melbourne, Australia: La Trobe University. eprint: http://hdl.handle.net/1959.9/405644 ((2006))

[75] Phillips, M. J.; Fruciano, C. The soft explosive model of placental mammal evolution, BMC Evolutionary Biology, Volume 18 (2018) no. 1 | DOI

[76] Poe, S. Test of von Baer's law of the conservation of early development, Evolution, Volume 60 (2006) no. 11, pp. 2239-2245 | DOI

[77] Pons, J.-M.; Hassanin, A.; Crochet, P.-A. Phylogenetic relationships within the Laridae (Charadriiformes: Aves) inferred from mitochondrial markers, Molecular Phylogenetics and Evolution, Volume 37 (2005) no. 3, pp. 686-699 | DOI

[78] Prum, R. O.; Berv, J. S.; Dornburg, A.; Field, D. J.; Townsend, J. P.; Lemmon, E. M.; Lemmon, A. R. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing, Nature, Volume 526 (2015) no. 7574, pp. 569-573 | DOI

[79] Pyron, R. A. Biogeographic Analysis Reveals Ancient Continental Vicariance and Recent Oceanic Dispersal in Amphibians, Systematic Biology, Volume 63 (2014) no. 5, pp. 779-797 | DOI

[80] Rabosky, D. L.; Donnellan, S. C.; Grundler, M.; Lovette, I. J. Analysis and Visualization of Complex Macroevolutionary Dynamics: An Example from Australian Scincid Lizards, Systematic Biology, Volume 63 (2014) no. 4, pp. 610-627 | DOI

[81] Reeder, T. W. A phylogeny of the Australian Sphenomorphus group (Scincidae: Squamata) and the phylogenetic placement of the crocodile skinks (Tribolonotus): Bayesian approaches to assessing congruence and obtaining confidence in maximum likelihood inferred relationships, Molecular Phylogenetics and Evolution, Volume 27 (2003) no. 3, pp. 384-397 | DOI

[82] Rineau, V.; Grand, A.; Zaragüeta, R.; Laurin, M. Experimental systematics: sensitivity of cladistic methods to polarization and character ordering schemes, Contributions to Zoology, Volume 84 (2015) no. 2, pp. 129-148 | DOI

[83] Rineau, V.; Zaragüeta, R.; Laurin, M. Impact of errors on cladistic inference: simulation-based comparison between parsimony and three-taxon analysis, Contributions to Zoology, Volume 87 (2018) no. 1, pp. 25-40 | DOI

[84] Ruta, M.; Coates, M. I. Dates, nodes and character conflict: Addressing the Lissamphibian origin problem, Journal of Systematic Palaeontology, Volume 5 (2007) no. 1, pp. 69-122 | DOI

[85] Sánchez-Villagra, M. R. Contributions on fossilised ontogenies: The rock record of vertebrate development, Seminars in Cell & Developmental Biology, Volume 21 (2010) no. 4 | DOI

[86] Sánchez, M. Embryos in Deep Time, University of California Press, 2012 | DOI

[87] Schneider, J. W. R.; Rößler, R.; Voigt, S.; Scholze, F. Example for the description of basins in the CPT nonmarine-marine correlation chart – Thuringian Forest Basin, East Germany, Permophiles, Volume 61 (2015), pp. 29-35

[88] Schoch, R. R. The early formation of the skull in extant and Paleozoic amphibians, Paleobiology, Volume 28 (2002) no. 2, pp. 278-296 | DOI

[89] Schoch, R. R. Skeleton formation in the Branchiosauridae: a case study in comparing ontogenetic trajectories, Journal of Vertebrate Paleontology, Volume 24 (2004) no. 2, pp. 309-319 | DOI

[90] Schoch, R. R. Skull ontogeny: developmental patterns of fishes conserved across major tetrapod clades, Evolution <html_ent glyph="@amp;" ascii="&amp;"/> Development, Volume 8 (2006) no. 6, pp. 524-536 | DOI

[91] Schoch, R. R. Amphibian skull evolution: The developmental and functional context of simplification, bone loss and heterotopy, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, Volume 322 (2014) no. 8, pp. 619-630 | DOI

[92] Schoch, R. R. First evidence of the branchiosaurid temnospondyl Leptorophus in the Early Permian of the Saar-Nahe Basin (SW Germany), Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, Volume 272 (2014) no. 2, pp. 225-236 | DOI

[93] Schoch, R. R. The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls, Journal of Paleontology, Volume 93 (2019) no. 1, pp. 137-156 | DOI

[94] Schoch, R. R.; Carroll, R. L. Ontogenetic evidence for the Paleozoic ancestry of salamanders, Evolution and Development, Volume 5 (2003) no. 3, pp. 314-324 | DOI

[95] Schoch, R.; Milner, A. Structure and implications of theories on the origin of lissamphibians In: In: Recent Advances in the Origin and Early Radiation of Vertebrates. Ed. by Arratia G , Wilson MVH , and Cloutier R, Dr. Friedrich Pfeil, Munich, Germany (2004), pp. 345-377

[96] Schulmeister, S.; Wheeler, W. C. Comparative and phylogenetic analysis of developmental sequences, Evolution and Development, Volume 6 (2004) no. 1, pp. 50-57 | DOI

[97] Sheil, C. A.; Jorgensen, M.; Tulenko, F.; Harrington, S. Variation in timing of ossification affects inferred heterochrony of cranial bones in Lissamphibia, Evolution & Development, Volume 16 (2014) no. 5, pp. 292-305 | DOI

[98] Sigurdsen, T.; Green, D. M. The origin of modern amphibians: a re-evaluation, Zoological Journal of the Linnean Society, Volume 162 (2011) no. 2, pp. 457-469 | DOI

[99] Skawiński, T.; Borczyk, B. Evolution of developmental sequences in lepidosaurs, PeerJ, Volume 5 (2017) | DOI

[100] Spiekman, S. N. F.; Werneburg, I. Patterns in the bony skull development of marsupials: high variation in onset of ossification and conserved regions of bone contact, Scientific Reports, Volume 7 (2017) no. 1 | DOI

[101] Steen, M. C. On the Fossil Amphibia from the Gas Coal of Nýřrany and other Deposits in Czechoslovakia., Proceedings of the Zoological Society of London, Volume B108 (1938) no. 2, pp. 205-283 | DOI

[102] Sterli, J.; de la Fuente, M. S.; Rougier, G. W. New remains of Condorchelys antiqua (Testudinata) from the Early-Middle Jurassic of Patagonia: anatomy, phylogeny, and paedomorphosis in the early evolution of turtles, Journal of Vertebrate Paleontology, Volume 38 (2018) no. 4 | DOI

[103] Sterli, J.; Pol, D.; Laurin, M. Incorporating phylogenetic uncertainty on phylogeny-based palaeontological dating and the timing of turtle diversification, Cladistics, Volume 29 (2013) no. 3, pp. 233-246 | DOI

[104] Swofford DL PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0a165 (Expired). URL: http://phylosolutions.com/paup-test/, (2019)

[105] Tarver, J. E.; dos Reis, M.; Mirarab, S.; Moran, R. J.; Parker, S.; O’Reilly, J. E.; King, B. L.; O’Connell, M. J.; Asher, R. J.; Warnow, T.; Peterson, K. J.; Donoghue, P. C.; Pisani, D. The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference, Genome Biology and Evolution, Volume 8 (2016) no. 2, pp. 330-344 | DOI

[106] Vorobyeva, E.; Hinchliffe, J. Developmental pattern and morphology of Salamendrella keyserlingii limbs (Amphibia, Hynobiidae) including some evolutionary aspects, Russian Journal of Herpetology, Volume 1 (1996), pp. 68-81

[107] Vos, W.; Witzmann, F.; Fröbisch, N. B. Tail regeneration in the Paleozoic tetrapod Microbrachis pelikani and comparison with extant salamanders and squamates, Journal of Zoology, Volume 304 (2018) no. 1, pp. 34-44 | DOI

[108] Wagenmakers, E.-J.; Farrell, S. AIC model selection using Akaike weights, Psychonomic Bulletin & Review, Volume 11 (2004) no. 1, pp. 192-196 | DOI

[109] Wang, N.; Kimball, R. T.; Braun, E. L.; Liang, B.; Zhang, Z. Assessing Phylogenetic Relationships among Galliformes: A Multigene Phylogeny with Expanded Taxon Sampling in Phasianidae, PLoS ONE, Volume 8 (2013) no. 5 | DOI

[110] Watson, D. M. S. VII.—The Origin of Frogs, Transactions of the Royal Society of Edinburgh, Volume 60 (1940) no. 1, pp. 195-231 | DOI

[111] Weisbecker, V. Monotreme ossification sequences and the riddle of mammalian skeletal development, Evolution, Volume 65 (2011) no. 5, pp. 1323-1335 | DOI

[112] Weisbecker, V.; Mitgutsch, C. A large-scale survey of heterochrony in anuran cranial ossification patterns, Journal of Zoological Systematics and Evolutionary Research, Volume 48 (2010) no. 4, pp. 332-347 | DOI

[113] Werneburg, I.; Geiger, M. Ontogeny of domestic dogs and the developmental foundations of carnivoran domestication, Journal of Mammalian Evolution, Volume 24 (2017) no. 3, pp. 323-343 | DOI

[114] Werneburg, I.; Sánchez-Villagra, M. R. Timing of organogenesis support basal position of turtles in the amniote tree of life, BMC Evolutionary Biology, Volume 9 (2009) no. 1 | DOI

[115] Werneburg R Earliest ’nursery ground’ of temnospondyl amphibians in the Permian, Semana, Volume 32 (2018), pp. 3-42

[116] Witzmann, F. Developmental patterns and ossification sequence in the Permo-Carboniferous temnospondylArchegosaurus decheni(Saar-Nahe Basin, Germany), Journal of Vertebrate Paleontology, Volume 26 (2006) no. 1, pp. 7-17 | DOI

[117] Zhang, P.; Zhou, H.; Chen, Y.-Q.; Liu, Y.-F.; Qu, L.-H. Mitogenomic Perspectives on the Origin and Phylogeny of Living Amphibians, Systematic Biology, Volume 54 (2005) no. 3, pp. 391-400 | DOI

[118] Zhuang, L.; Bluteau, G.; Trueb, B. Phylogenetic analysis of receptor FgfrL1 shows divergence of the C-terminal end in rodents, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 186 (2015), pp. 43-50 | DOI

Cited by Sources:

block.super