Section: Paleontology
Topic:
Paleontology
Morphometric changes in two Late Cretaceous calcareous nannofossil lineages support diversification fueled by long-term climate change
10.24072/pcjournal.183 - Peer Community Journal, Volume 2 (2022), article no. e64.
Get full text PDF Peer reviewed and recommended by PCIMorphometric changes have been investigated in the two groups of calcareous nannofossils, Cribrosphaerella ehrenbergii and Microrhabdulus undosus across the Campanian to Maastrichtian of the Zagros Basin of Iran. Results reveal a common episode of size increase at c. 76 Ma, with a sudden increase in the size of C. ehrenbergii and with the emergence of a newly defined, larger species Microrhabdulus zagrosensis n.sp. An even larger species emerges at c. 69 Ma within the Microrhabdulus lineage, Microrhabdulus sinuosus n.sp. The timing of these size changes and origination events matches global changes in nannoplankton diversity and/or in diversity of other planktonic organisms and marine invertebrates. Comparison with long-term global climate change supports that these two distinct episodes of morphological change coincide respectively with the late Campanian carbon isotope event and acceleration of cooling and with climatic instability across the mid-Maastrichtian event.
Type: Research article
Razmjooei, Mohammad Javad 1, 2; Thibault, Nicolas 1
@article{10_24072_pcjournal_183, author = {Razmjooei, Mohammad Javad and Thibault, Nicolas}, title = {Morphometric changes in two {Late} {Cretaceous} calcareous nannofossil lineages support diversification fueled by long-term climate change}, journal = {Peer Community Journal}, eid = {e64}, publisher = {Peer Community In}, volume = {2}, year = {2022}, doi = {10.24072/pcjournal.183}, url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.183/} }
TY - JOUR AU - Razmjooei, Mohammad Javad AU - Thibault, Nicolas TI - Morphometric changes in two Late Cretaceous calcareous nannofossil lineages support diversification fueled by long-term climate change JO - Peer Community Journal PY - 2022 VL - 2 PB - Peer Community In UR - https://peercommunityjournal.org/articles/10.24072/pcjournal.183/ DO - 10.24072/pcjournal.183 ID - 10_24072_pcjournal_183 ER -
%0 Journal Article %A Razmjooei, Mohammad Javad %A Thibault, Nicolas %T Morphometric changes in two Late Cretaceous calcareous nannofossil lineages support diversification fueled by long-term climate change %J Peer Community Journal %D 2022 %V 2 %I Peer Community In %U https://peercommunityjournal.org/articles/10.24072/pcjournal.183/ %R 10.24072/pcjournal.183 %F 10_24072_pcjournal_183
Razmjooei, Mohammad Javad; Thibault, Nicolas. Morphometric changes in two Late Cretaceous calcareous nannofossil lineages support diversification fueled by long-term climate change. Peer Community Journal, Volume 2 (2022), article no. e64. doi : 10.24072/pcjournal.183. https://peercommunityjournal.org/articles/10.24072/pcjournal.183/
PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.paleo.100011
Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.
[1] Upper Cretaceous deposits of east European Russia, Materialien zur Geologie Russlands, Volume 25 (1912), pp. 1-631
[2] Temperature and organism size: a biological law for ectotherms?, Advances in ecological research, Volume 25 (1994), pp. 1-58
[3] Trends in size changes in the coccolithophorids, calcareous nannoplankton, during the Mesozoic: A pilot study, Micropaleontology, Volume 51 (2005) no. 4, pp. 309-318 | DOI
[4] A sea of Lilliputians, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 284 (2009) no. 1-2, pp. 88-113 | DOI
[5] Evidence for a complex Valanginian nannoconid decline in the Vocontian basin (South East France), Marine Micropaleontology, Volume 84-85 (2012), pp. 37-53 | DOI
[6] Paleotectonic Reconstruction of the Central Tethyan Realm, Commission for the Geological Map of the World: Paris, France, Volume 21, 2018
[7] Cyclic evolution of phytoplankton forced by changes in tropical seasonality, Nature, Volume 601 (2021) no. 7891, pp. 79-84 | DOI
[8] Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa, Nature Communications, Volume 10 (2019) no. 1 | DOI
[9] Cretaceous-Tertiary planktic foraminifers from the southeastern Atlantic, Walvis Ridge area, Deep Sea Drilling Project Leg 74. Initial Report: DSDP, Volume 74 (1984), pp. 501-523
[10] Oxygen- and carbon-isotope variation and planktonic-foraminifera depth habitats, late Cretaceous to Paleocene, Central Pacific, Deep Sea Drilling Project Sites 463 and 465. Initial Report: DSDP, Volume 62 (1981), pp. 513-526
[11] Morphology and biogeography of Gephyrocapsa coccoliths in Holocene sediments, Marine Micropaleontology, Volume 29 (1997) no. 3-4, pp. 319-350 | DOI
[12] Size analyses of the coccolith species Biscutum constans and Watznaueria barnesiae from the Late Albian “Niveau Breistroffer” (SE France): taxonomic and palaeoecological implications, Geobios, Volume 39 (2006) no. 5, pp. 599-615 | DOI
[13] Biscutum constans coccolith size patterns across the mid Cretaceous in the western Tethys: Paleoecological implications, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 555 (2020) | DOI
[14] Calcareous nannoplankton evolution: a tale of two oceans, Micropaleontology, Volume 51 (2005) no. 4, pp. 299-308 | DOI
[15] Calcareous nannofossil evolution and diversity through time In: In Thierstein, H.R., and Young, J.R. (Eds.), Coccolithophores: From Molecular Process to Global Impact, Springer Verlag, Berlin (2004)
[16] Techniques In: In: Bown, P.R., Ed., Calcareous Nannofossil Biostratigraphy (British micropaleontological Society Publications Series), Chapman and Kluwer Academic, London (1998), pp. 16-28
[17] New species and new combinations of Cretaceous nannofossils and a note on the origin of Petrarhabdus (Deflandre) Wise and Wind, Journal of Nannoplankton Research, Volume 19 (1997) no. 2, pp. 133-146
[18] Upper Cretaceous In: In: Bown, P.R. (Ed.), Calcareous Nannofossil Biostratigraphy, British Micropaleontology Society Publication Series, Chapman and Hall/Kluwer Academic, London (1998), pp. 133-199
[19] Clay mineralogical and geochemical expressions of the “Late Campanian Event” in the Aquitaine and Paris basins (France): Palaeoenvironmental implications, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 447 (2016), pp. 42-52 | DOI
[20] Continental weathering as a driver of Late Cretaceous cooling: new insights from clay mineralogy of Campanian sediments from the southern Tethyan margin to the Boreal realm, Global and Planetary Change, Volume 162 (2018), pp. 292-312 | DOI
[21] Cretaceous planktic foraminifera In: In: Bolli, H.M., Saunders J.B., Perch-Nielsen, K. (Eds.), Plankton Stratigraphy, Cambridge University Press (1985), pp. 17-86
[22] New insights in the pattern and timing of the Early Jurassic calcareous nannofossil crisis, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 427 (2015), pp. 100-108 | DOI
[23] Hafnium‑neodymium isotope evidence for enhanced weathering and uplift-climate interactions during the Late Cretaceous, Chemical Geology, Volume 591 (2022) | DOI
[24] Sur les nannofossiles calcaires et leur systématique, Revue de Micropaléontologie, Volume 2 (1959), pp. 127-152
[25] Sur les Microrhabdulidés, famille nouvelle de nannofossiles calcaires, Comptes Rendus (Hebdomadaires des Séances) de l'Académie des Sciences Paris, Volume 256 (1963), pp. 3484-3487
[26] Super-species in the calcareous plankton In: In Coccolithophores, Springer, Berlin, Heidelber (2004), pp. 271-298
[27] Sinking rates of marine phytoplankton measured with a fluorometer, Journal of Experimental Marine Biology and Ecology, Volume 1 (1967) no. 2, pp. 191-208 | DOI
[28] Campanian Dwarf Calcareous Nannofossils from Wodejebato Guyot, Proceedings of the Ocean Drilling Program, 144 Scientific Results, Ocean Drilling Program, 1995 | DOI
[29] Morphometric analysis of Arkhangelskiella cymbiformis Vekshina, 1959, in the upper Cretaceous rocks of Egypt and its stratigraphic importance, Annals of the Geological Survey of Egypt, Volume 20 (1995), pp. 585-601
[30] Schizosphaerella size and abundance variations across the Toarcian Oceanic Anoxic Event in the Sogno Core (Lombardy Basin, Southern Alps), Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 595 (2022) | DOI
[31] Palaeoenvironmental vs. evolutionary control on size variation of coccoliths across the Lower-Middle Jurassic, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 465 (2017), pp. 177-192 | DOI
[32] A technique for viewing the same nannofossil specimen in light microscope and scanning electron microscope using standard preparation material, Journal of Micropaleontology, Volume 7 (1988), pp. 53-57
[33] Species level variation in coccolithophores In: In Coccolithophores, Springer, Heidelberg (2004), pp. 327-366
[34] Models in phylogeny In: In: Schopf, T. J. M., Models in Paleobiology, Freeman, Cooper and Company, San Francisco (1972), pp. 130-145
[35] A morphometric analysis of the Arkhangelskiella group and its stratigraphical and paleoenvironmental importance In: In: Crux, J.A., van Heck, S.E. (Eds.), Nannofossils and Their Applications, Ellis Horwood Limited, Chichester (England) (1987), pp. 327-339
[36] Size patterns of the coccolith Watznaueria barnesiae in the lower Cretaceous: Biotic versus abiotic forcing, Marine Micropaleontology, Volume 152 (2019) | DOI
[37] Punctuated equilibria: the tempo and mode of evolution reconsidered, Paleobiology, Volume 3 (1977) no. 2, pp. 115-151 | DOI
[38] PAST: paleontological statistics software package for education and data analysis, Paleontologia electronica, Volume 4 (2001) no. 1
[39] Long‐term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2, Global Change Biology, Volume 18 (2012) no. 12, pp. 3504-3516 | DOI
[40] Coccolithophore size rules — Reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths, Marine Micropaleontology, Volume 67 (2008) no. 1-2, pp. 143-154 | DOI
[41] Coccolithophore cell size and the Paleogene decline in atmospheric CO2, Earth and Planetary Science Letters, Volume 269 (2008) no. 3-4, pp. 576-584 | DOI
[42] Biogeographic and Ecologic Patterns in calcareous nannoplankton in the Atlantic and Pacific Oceans during the Terminal Cretaceous, Studia Geologica Salmanticensia, Volume 33 (1997), pp. 17-40
[43] The evolution of large size: how does Cope's Rule work?, Trends in Ecology & Evolution, Volume 20 (2005) no. 1, pp. 4-6 | DOI
[44] Maastrichtian planktonic foraminifer biostratigraphy of the Maud Rise (Weddell Sea, Antarctica): ODP Leg 113 Holes 689B and 690C In: In: Barker, P.F., Kennett, J.P., Shipboard Scientific Party (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. vol. 113. Ocean Drilling Program, College Station, TX (1990), pp. 489-513
[45] Upper cretaceous planktic foraminiferal biozonation for the austra realm, Marine Micropaleontology, Volume 20 (1992) no. 2, pp. 107-128 | DOI
[46] Biogeography of Campanian–Maastrichtian calcareous plankton in the region of the Southern Ocean: paleo-geographic and paleoclimatic simplications In: In: Kennett, J.P., Warnke, D.A. (Eds.), The Antarctic Paleoenvi-ronment: a Perspective on Global Change, vol. 56. AGU, Antarctic Research Series (1992), pp. 31-60
[47] Climate change, body size evolution, and Cope's Rule in deep-sea ostracodes, Proceedings of the National Academy of Sciences, Volume 103 (2006) no. 5, pp. 1347-1352 | DOI
[48] Maastrichtian cephalopods from Cerralvo, north-eastern Mexico, Palaeontology, Volume 47 (2004) no. 6, pp. 1575-1627 | DOI
[49] Hemipelagic cephalopods from the Maastrichtian (late Cretaceous) Parras Basin at La Parra, Coahuila, Mexico, and their implications for the correlation of the lower Difunta Group, Journal of South American Earth Sciences, Volume 29 (2010) no. 3, pp. 597-618 | DOI
[50] Paleobiogeographical and paleobiological aspects of mid and Late Cretaceous ammonite evolution and bio-events in the Russian, Scripta Geologica, Volume 143 (2011), pp. 15-121
[51] Ammonite Faunal Dynamics Across Bio-Events During the Mid-and Late Cretaceous Along the Russian Pacific Coast, Acta Palaeontologica Polonica, Volume 57 (2012) no. 4, pp. 737-748 | DOI
[52] Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma), Geological Magazine, Volume 143 (2006) no. 5, pp. 561-608 | DOI
[53] Maastrichtian extinction patterns of Carribean province rudistids In: In: Macleod, N., Keller, G. (Eds.), Cretaceous–Tertiary Mass Extinctions: Biotic and Environmental Changes, W.W. Norton, New York (1996), pp. 231-273
[54] Morphologic evolution of the coccolithophorid Calcidiscus leptoporus from the early miocene to recent, Journal of Paleontology, Volume 74 (2000) no. 4, pp. 712-730 | DOI
[55] Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis, Basin Research, Volume 20 (2008) no. 2, pp. 211-226 | DOI
[56] Calcareous nannofossil biogeography illustrates palaeoclimate change in the Late Cretaceous Indian Ocean, Cretaceous Research, Volume 23 (2002) no. 5, pp. 537-634 | DOI
[57] Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21, Marine Micropaleontology, Volume 33 (1998) no. 1-2, pp. 55-86 | DOI
[58] Biometry of the Late Cretaceous Arkhangelskiella group: ecophenotypes controlled by nutrient flux, Cretaceous Research, Volume 30 (2009) no. 5, pp. 1193-1204 | DOI
[59] Late Cretaceous (Cenomanian–Maastrichtian) calcareous nannofossils from Goban Spur (DSDP Sites 549, 551): Implications for the palaeoceanography of the proto North Atlantic, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 299 (2011) no. 3-4, pp. 507-528 | DOI
[60] Biometry of Upper Cretaceous (Cenomanian–Maastrichtian) coccoliths – a record of long-term stability and interspecies size shifts, Revue de Micropaléontologie, Volume 57 (2014) no. 4, pp. 125-140 | DOI
[61] Discorhabdus as a key coccolith genus for paleoenvironmental reconstructions (Middle Jurassic, Lusitanian Basin): Biometry and taxonomic status, Marine Micropaleontology, Volume 94-95 (2012), pp. 45-57 | DOI
[62] The impact of OAE 1a on marine biota deciphered by size variations of coccoliths, Cretaceous Research, Volume 61 (2016), pp. 169-179 | DOI
[63] Stratigraphy, sedimentology, and paleoecology of upper Cretaceous/Paleocene shelf deltaic sediments of Seymour Island In: In: Feldmann, R.M., Woodburne, M.O. (Eds.), Geology and Paleontology of Seymour Isnland, Antarctic Peninsula, Volume 169, Geological Society of America (1988), pp. 25-54
[64] Bioturbation, inoceramid extinction, and mid-Maastrichtian ecological change, Geology, Volume 22 (1994) no. 2 | DOI
[65] Extinction pattern of Inoceramus (Bivalvia) on shell fragment biostratigraphy, Geological Society of America Special Papers, Geological Society of America, 1990, pp. 509-518 | DOI
[66] Cell Size as a Key Determinant of Phytoplankton Metabolism and Community Structure, Annual Review of Marine Science, Volume 7 (2015) no. 1, pp. 241-264 | DOI
[67] Adaptation of Ceratium furca and Gonyaulax polyedra (dinophyceace) to different temperatures and irradiances: growth rates and cell volumes, Journal of Phycology, Volume 18 (1982) no. 2, pp. 241-245 | DOI
[68] On the validity of Bergmann’s rule, Journal of Biogeography, Volume 30 (2003), pp. 331-351 (https:/www.jstor.org/stable/3554562)
[69] Primary v. carbonate production in the Toarcian, a case study from the Llanbedr (Mochras Farm) borehole, Wales, Geological Society, London, Special Publications, Volume 514 (2021) no. 1, pp. 59-81 | DOI
[70] The Phanerozoic Record of Global Sea-Level Change, Science, Volume 310 (2005) no. 5752, pp. 1293-1298 | DOI
[71] Effect of light and temperature interactions on growth of Cryptomonas erosa (cryptophyceae) , Journal of Phycology, Volume 15 (1979) no. 2, pp. 127-134 | DOI
[72] Scale-dependence of Cope's rule in body size evolution of Paleozoic brachiopods, Proceedings of the National Academy of Sciences, Volume 105 (2008) no. 14, pp. 5430-5434 | DOI
[73] Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes, Earth-Science Reviews, Volume 172 (2017), pp. 224-247 | DOI
[74] Coccolithophore calcification response to past ocean acidification and climate change, Nature Communications, Volume 5 (2014) no. 1 | DOI
[75] Quantitative analysis of Early Campanian calcareous nannofossil assemblages from the southern regions of the Russian Platform In: In: M. Wagreich (ed.): Aspects of Cretaceous Stratigraphy and Paleobiostratigraphy. Österreichische Akademie der Wissenschaften Schrifternreihe der Erdwissenschaftlichen Kommissionen, Volume 15 (2002), pp. 205-221
[76] Quantitative changes of calcareous nannoflora in the Saratov region (Russian Platform) during the late Maastrichtian warming event, Journal of Iberian Geology, Volume 31 (2005), pp. 149-165
[77] Der Feinbau und die Klassifikation der Coccolithen aus dem Maastrichtien von Dänemar, Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter, Volume 16 (1968), pp. 1-96
[78] Neue Coccolithen aus dem Maastrichtien von Danemark, Madagaskar und Agypten, Geological Society of Denmark, Bulletin, Volume 22 (1973), pp. 306-333
[79] Mesozoic Calcareous Nannofossils In: In: Bolli, H.M., Saunders, J.B., Perch-Nielsen, K. (Eds.), Plankton Stratigraphy, Cambridge Earth Sciences Series, Cambridge University Press (1985), pp. 329-426
[80] Abundance and size changes in the calcareous nannofossil Schizosphaerella – Relation to sea-level, the carbonate factory and palaeoenvironmental change from the Sinemurian to earliest Toarcian of the Paris Basin, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 485 (2017), pp. 271-282 | DOI
[81] Environmental drivers of size changes in lower Jurassic Schizosphaerella spp, Marine Micropaleontology, Volume 168 (2021) | DOI
[82] A revised method for observing the same nannofossils specimens with scanning electron microscope and light microscope, Rivista Italiana Di Paleontologia, Volume 95 (1990), pp. 449-454
[83] Traité de Paléontologie In: In: Grassé, P.P. (Editor), Traité de zoologie. Anatomie, systématique, biologie, 1, part 1, Phylogenie. Protozoaires: généralités. Flagellés, Masson and Cie, Paris (1952), pp. 107-115
[84] Calcareous nannofossils across the K–T boundary, ODP-Hole 690 C, Maud Rise, Weddell Sea, Proceedings of the Oceans Drilling Program, Scientific Results, Volume 113 (1990), pp. 515-532
[85] Middle to late Holocene environmental changes in the depositional system of the tropical brackish Bolgoda Lake, coastal southwest Sri Lanka, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 465 (2017), pp. 122-137 | DOI
[86] Coniacian – Maastrichtian calcareous nannofossil biostratigraphy and carbon-isotope stratigraphy in the Zagros Basin (Iran): consequences for the correlation of Late Cretaceous Stage Boundaries between the Tethyan and Boreal realms, Newsletters on Stratigraphy, Volume 47 (2014) no. 2, pp. 183-209 | DOI
[87] Integrated bio- and carbon-isotope stratigraphy of the Upper Cretaceous Gurpi Formation (Iran): A new reference for the eastern Tethys and its implications for large-scale correlation of stage boundaries, Cretaceous Research, Volume 91 (2018), pp. 312-340 | DOI
[88] Santonian-Maastrichtian carbon-isotope stratigraphy and calcareous nannofossil biostratigraphy of the Zagros Basin: Long-range correlation, similarities and differences of carbon-isotope trends at global scale, Global and Planetary Change, Volume 184 (2020) | DOI
[89] Calcareous nannofossil response to Late Cretaceous climate change in the eastern Tethys (Zagros Basin, Iran), Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 538 (2020) | DOI
[90] Einige Kalkflagellaten-Gattungen (Coccolithophoriden, Coccolithineen) aus dem Mesozoikum Deutschlands, Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Volume 6 (1964) no. 10, pp. 749-759
[91] Cretaceous nannoplankton biostratigraphy and oceanography of the northwestern Atlantic Ocean, In: Benson, W.E., Sheridan, R.E. (Eds.), Initial Reports of the Deep Sea Drilling Project, Volume 44 (1978), pp. 731-759
[92] Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian oceans: Implications for paleoceanography, Marine Micropaleontology, Volume 10 (1986) no. 1-3, pp. 235-266 | DOI
[93] Pseudo-cryptic speciation in coccolithophores, Proceedings of the National Academy of Sciences, Volume 100 (2003) no. 12, pp. 7163-7168 | DOI
[94] Abiotic Forcing of Plankton Evolution in the Cenozoic, Science, Volume 303 (2004) no. 5655, pp. 207-210 | DOI
[95] Biogeography and evolution of body size in marine plankton, Earth-Science Reviews, Volume 78 (2006) no. 3-4, pp. 239-266 | DOI
[96] Evolution of the Cretaceous calcareous nannofossil genus Eiffellithus and its biostratigraphic significance, Cretaceous Research, Volume 30 (2009) no. 5, pp. 1083-1102 | DOI
[97] Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes, Earth and Planetary Science Letters, Volume 290 (2010) no. 3-4, pp. 448-458 | DOI
[98] Astronomically-paced coccolith size variations during the early Pliensbachian (Early Jurassic), Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 295 (2010) no. 1-2, pp. 281-292 | DOI
[99] Biometric analysis of the Arkhangelskiella group in the upper Campanian-Maastrichtian of the Stevns-1 borehole, Denmark: Taxonomic implications and evolutionary trends, Geobios, Volume 43 (2010) no. 6, pp. 639-652 | DOI
[100] Calcareous nannofossil biostratigraphy and turnover dynamics in the late Campanian–Maastrichtian of the tropical South Atlantic, Revue de Micropaléontologie, Volume 59 (2016) no. 1, pp. 57-69 | DOI
[101] Morphometry of selected calcareous nannofossils across the Cretaceous-Paleocene boundary at the Bidart (France) and Elles (Tunisia) sections. Comparison with carbon and oxygen stable isotope ratios, Bulletin de la Société Géologique de France, Volume 175 (2004) no. 4, pp. 399-412 | DOI
[102] Upper Campanian–Maastrichtian nannofossil biostratigraphy and high-resolution carbon-isotope stratigraphy of the Danish Basin: Towards a standard δ13C curve for the Boreal Realm, Cretaceous Research, Volume 33 (2012) no. 1, pp. 72-90 | DOI
[103] Late Cretaceous (late Campanian–Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea, Climate of the Past, Volume 12 (2016) no. 2, pp. 429-438 | DOI
[104] Offsets in the early Danian recovery phase in carbon isotopes: Evidence from the biometrics and phylogeny of the Cruciplacolithus lineage, Revue de Micropaléontologie, Volume 61 (2018) no. 3-4, pp. 207-221 | DOI
[105] Late cretaceous nannoplankton and the change at the cretaceous-tertiary boundary, The Deep Sea Drilling Project: A Decade of Progress, SEPM (Society for Sedimentary Geology), 1981, pp. 355-394 | DOI
[106] Bergmann's principle and deep-water gigantism in marine crustaceans, Biology Bulletin of the Russian Academy of Sciences, Volume 28 (2001) no. 6, pp. 646-650
[107] Quantitative analysis of the Arkhangelskiella cymbiformis group and its biostratigraphical usefulness in the North Sea area, Journal of Micropaleontology, Volume 8 (1989), pp. 131-134
[108] Sinking and floating In: In. The Physiological Ecology of Phytoplankton, Morris, I.(ed.), Blackwell Scientific Publications, Oxford (1980), pp. 371-412
[109] A review of Maastrichtian ammonite ranges, Geological Society of America Special Papers, Geological Society of America, 1990, pp. 519-530 | DOI
[110] Ammonite and inoceramid bivalve extinction patterns in Cretaceous/Tertiary boundary sections of the Biscay region (southwestern France, northern Spain), Geology, Volume 19 (1991) no. 12 | DOI
[111] Upper Cretaceous nannofossils from Leg 120, Kerguelen Plateau, Southern Ocean, Proceedings of the Ocean Drilling Program, Scientific Results , Volume 120 (1992), pp. 343-370
[112] Mesozoic and Cenozoic calcareous nannofossils recovered by Deep Sea Drilling project Leg 71 in the Falkland Plateau Region, South-west Atlantic Ocean, Initial Reports of the Deep Sea Drilling Project, Volume 71 (1983), pp. 481-550
[113] Mesozoic and Cenozoic calcareous nannofossils recovered by DSDP Leg 36 drilling on the Falkland Plateau, south-west Atlantic sector of the Southern Ocean, Initial Reports of the Deep Sea Drilling Project, Volume 36 (1977), pp. 269-491
[114] Evolution and extinction of Maastrichtian (Late Cretaceous) cephalopods from the López de Bertodano Formation, Seymour Island, Antarctica, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 418 (2015), pp. 193-212 | DOI
[115] Size variations and abundance patterns of calcareous nannofossils in mid Barremian black shales of the Boreal Realm (Lower Saxony Basin), Marine Micropaleontology, Volume 156 (2020) | DOI
[116] Higher classification of calcareous nannoplankton, Journal of Nannoplankton Research, Volume 19 (1997), pp. 15-20
[117] Nannotax3 website, International Nannoplankton Association. Accessed 21 Apr. 2017, 2017 (http://www.mikrotax.org/Nannotax3)
Cited by Sources: