Section: Paleontology
Topic: Paleontology

Evidence of high Sr/Ca in a Middle Jurassic murolith coccolith species

10.24072/pcjournal.20 - Peer Community Journal, Volume 1 (2021), article no. e25.

Get full text PDF Peer reviewed and recommended by PCI
article image

Paleoceanographical reconstructions are often based on microfossil geochemical analyses. Coccoliths are the most ancient, abundant and continuous record of pelagic photic zone calcite producer organisms. Hence, they could be valuable substrates for geochemically based paleoenvironmental reconstructions but only Sr/Ca is exploited even if it remains poorly understood. For example, some murolith coccoliths species have very high Sr/Ca compared to the common 1-4 mmol/mol recorded in placolith coccoliths. In this study, we analyzed the elemental composition of the Middle Jurassic murolith Crepidolithus crassus by synchrotron-based nanoXRF (X-ray Fluorescence Spectroscopy) mapping focusing on Sr/Ca and compared the record to two placolith species, namely Watznaueria contracta and Discorhabdus striatus. In C. crassus, Sr/Ca is more than ten times higher than in both placoliths and seems higher in the proximal cycle. By comparison with the placoliths analyzed in the same analytical set-up and from the same sample, we exclude the impact of the diagenesis and seawater Sr/Ca to explain the high Sr/Ca in C. crassus. Based on comparisons to Pontosphaera discopora and Scyphosphaera apsteinii which also have high Sr/Ca, it seems more likely that high Sr/Ca in C. crassus is either due to the vertical elongation of the R-units of the proximal cycle or related to the action of the special polysaccharide controlling the growth of those vertically elongated R-units that may have affinities to Sr2+. In order to apply the Sr/Ca proxy to muroliths, further investigations are needed on cultured coccoliths.

Published online:
DOI: 10.24072/pcjournal.20
Type: Research article

Suchéras-Marx, Baptiste 1; Giraud, Fabienne 2, 3; Simionovici, Alexandre 2, 4, 3; Tucoulou, Rémi 5; Daniel, Isabelle 6

1 Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE - Aix-en-Provence, France
2 CNRS, ISTerre – Grenoble, France
3 Université Grenoble-Alpes, ISTerre – Grenoble, France
4 Institut Universitaire de France (IUF)
5 ESRF – The European Synchrotron Radiation Facility – Grenoble, France
6 UMR CNRS 5276 LGL, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon – Villeurbanne, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Such\'eras-Marx, Baptiste and Giraud, Fabienne and Simionovici, Alexandre and Tucoulou, R\'emi and Daniel, Isabelle},
     title = {Evidence of high {Sr/Ca} in a {Middle} {Jurassic} murolith coccolith species},
     journal = {Peer Community Journal},
     eid = {e25},
     publisher = {Peer Community In},
     volume = {1},
     year = {2021},
     doi = {10.24072/pcjournal.20},
     url = {}
AU  - Suchéras-Marx, Baptiste
AU  - Giraud, Fabienne
AU  - Simionovici, Alexandre
AU  - Tucoulou, Rémi
AU  - Daniel, Isabelle
TI  - Evidence of high Sr/Ca in a Middle Jurassic murolith coccolith species
JO  - Peer Community Journal
PY  - 2021
VL  - 1
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.20
ID  - 10_24072_pcjournal_20
ER  - 
%0 Journal Article
%A Suchéras-Marx, Baptiste
%A Giraud, Fabienne
%A Simionovici, Alexandre
%A Tucoulou, Rémi
%A Daniel, Isabelle
%T Evidence of high Sr/Ca in a Middle Jurassic murolith coccolith species
%J Peer Community Journal
%D 2021
%V 1
%I Peer Community In
%R 10.24072/pcjournal.20
%F 10_24072_pcjournal_20
Suchéras-Marx, Baptiste; Giraud, Fabienne; Simionovici, Alexandre; Tucoulou, Rémi; Daniel, Isabelle. Evidence of high Sr/Ca in a Middle Jurassic murolith coccolith species. Peer Community Journal, Volume 1 (2021), article  no. e25. doi : 10.24072/pcjournal.20.

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.paleo.100006

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Bottini, C.; Dapiaggi, M.; Erba, E.; Faucher, G.; Rotiroti, N. High resolution spatial analyses of trace elements in coccoliths reveal new insights into element incorporation in coccolithophore calcite, Scientific Reports, Volume 10 (2020) no. 1 | DOI

[2] Bown, P. R.; Young, J. R. Introduction In: Bown PR (Ed.), Calcareous nannofossil biostratigraphy. British Micropaleontological Society Publication Series. Chapman and Hall (Kluwer Academic Publishers) (1998), pp. 1-15

[3] Dedert, M.; Stoll, H.; Kars, S.; Young, J. R.; Shimizu, N.; Kroon, D.; Lourens, L.; Ziveri, P. Temporally variable diagenetic overgrowth on deep-sea nannofossil carbonates across Palaeogene hyperthermals and implications for isotopic analyses, Marine Micropaleontology, Volume 107 (2014), pp. 18-31 | DOI

[4] Elderfield, H.; Ganssen, G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios, Nature, Volume 405 (2000) no. 6785, pp. 442-445 | DOI

[5] Hermoso, M.; Lefeuvre, B.; Minoletti, F.; de Rafélis, M. Extreme strontium concentrations reveal specific biomineralization pathways in certain coccolithophores with implications for the Sr/Ca paleoproductivity proxy, PLOS ONE, Volume 12 (2017) no. 10 | DOI

[6] James, N.; Jones, B. Origin of carbonate sedimentary rocks, Wiley-Blackwell, (2015), 464 pages

[7] Lebrato, M.; Garbe-Schönberg, D.; Müller, M. N.; Blanco-Ameijeiras, S.; Feely, R. A.; Lorenzoni, L.; Molinero, J.-C.; Bremer, K.; Jones, D. O. B.; Iglesias-Rodriguez, D.; Greeley, D.; Lamare, M. D.; Paulmier, A.; Graco, M.; Cartes, J.; Barcelos e Ramos, J.; de Lara, A.; Sanchez-Leal, R.; Jimenez, P.; Paparazzo, F. E.; Hartman, S. E.; Westernströer, U.; Küter, M.; Benavides, R.; da Silva, A. F.; Bell, S.; Payne, C.; Olafsdottir, S.; Robinson, K.; Jantunen, L. M.; Korablev, A.; Webster, R. J.; Jones, E. M.; Gilg, O.; Bailly du Bois, P.; Beldowski, J.; Ashjian, C.; Yahia, N. D.; Twining, B.; Chen, X.-G.; Tseng, L.-C.; Hwang, J.-S.; Dahms, H.-U.; Oschlies, A. Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean, Proceedings of the National Academy of Sciences, Volume 117 (2020) no. 36, pp. 22281-22292 | DOI

[8] Meyer, E. M.; Langer, G.; Brownlee, C.; Wheeler, G. L.; Taylor, A. R. Sr in coccoliths of Scyphosphaera apsteinii: Partitioning behavior and role in coccolith morphogenesis, Geochimica et Cosmochimica Acta, Volume 285 (2020), pp. 41-54 | DOI

[9] Minoletti, F.; Hermoso, M.; Gressier, V. Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry, Nature Protocols, Volume 4 (2009) no. 1, pp. 14-24 | DOI

[10] Müller, M. N.; Kısakürek, B.; Buhl, D.; Gutperlet, R.; Kolevica, A.; Riebesell, U.; Stoll, H.; Eisenhauer, A. Response of the coccolithophores Emiliania huxleyi and Coccolithus braarudii to changing seawater Mg2+ and Ca2+ concentrations: Mg/Ca, Sr/Ca ratios and δ44/40Ca, δ26/24Mg of coccolith calcite, Geochimica et Cosmochimica Acta, Volume 75 (2011) no. 8, pp. 2088-2102 | DOI

[11] Paquette, J.; Reeder, R. J. Relationship between surface structure, growth mechanism, and trace element incorporation in calcite, Geochimica et Cosmochimica Acta, Volume 59 (1995) no. 4, pp. 735-749 | DOI

[12] Pavia, G.; Enay, R. Definition of the Aalenian-Bajocian Stage boundary, Episodes, Volume 20 (1997) no. 1, pp. 16-22 | DOI

[13] Payne, V. E.; Rickaby, R. E. M.; Benning, L. G.; Shaw, S. Calcite crystal growth orientation: implications for trace metal uptake into coccoliths, Mineralogical Magazine, Volume 72 (2008) no. 1, pp. 269-272 | DOI

[14] Raitzsch, M.; Kuhnert, H.; Hathorne, E. C.; Groeneveld, J.; Bickert, T. U/Ca in benthic foraminifers: A proxy for the deep-sea carbonate saturation, Geochemistry, Geophysics, Geosystems, Volume 12 (2011) no. 6 | DOI

[15] Rickaby, R. E. M.; Elderfield, H. Planktonic foraminiferal Cd/Ca: Paleonutrients or paleotemperature?, Paleoceanography, Volume 14 (1999) no. 3, pp. 293-303 | DOI

[16] Solé, V.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 62 (2007) no. 1, pp. 63-68 | DOI

[17] Stoll, H. M.; Schrag, D. P. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate, Geochemistry, Geophysics, Geosystems, Volume 1 (2000) no. 5 | DOI

[18] Stoll, H. M.; Shimizu, N. Micropicking of nannofossils in preparation for analysis by secondary ion mass spectrometry, Nature Protocols, Volume 4 (2009) no. 7, pp. 1038-1043 | DOI

[19] Stoll, H. M.; Ziveri, P. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity, Marine Micropaleontology, Volume 46 (2002) no. 1-2, pp. 209-221 | DOI

[20] Stoll, H. M.; Ziveri, P. Coccolithophorid-based geochemical paleoproxies, Thierstein HR, Young JR (Eds). Coccolithophores: From molecular processes to global impact, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 529-562 | DOI

[21] Stoll, H.; Shimizu, N.; Arevalos, A.; Matell, N.; Banasiak, A.; Zeren, S. Insights on coccolith chemistry from a new ion probe method for analysis of individually picked coccoliths, Geochemistry, Geophysics, Geosystems, Volume 8 (2007) no. 6 | DOI

[22] Suchéras-Marx, B.; Guihou, A.; Giraud, F.; Lécuyer, C.; Allemand, P.; Pittet, B.; Mattioli, E. Impact of the Middle Jurassic diversification of Watznaueria (coccolith-bearing algae) on the carbon cycle and δ13C of bulk marine carbonates, Global and Planetary Change, Volume 86-87 (2012), pp. 92-100 | DOI

[23] Suchéras-Marx, B.; Giraud, F.; Lena, A.; Simionovici, A. Picking nannofossils: How and why, Journal of Micropalaeontology, Volume 36 (2016), pp. 219-221 | DOI

[24] Suchéras-Marx, B.; Giraud, F.; Simionovici, A.; Daniel, I.; Tucoulou, R. Perspectives on heterococcolith geochemical proxies based on high-resolution X-ray fluorescence mapping, Geobiology, Volume 14 (2016) no. 4, pp. 390-403 | DOI

[25] Suchéras-Marx, B.; Giraud, F.; Daniel, I.; Rivard, C.; Aubry, M.-P.; Baumann, K.-H.; Beaufort, L.; Tucoulou, R.; Simionovici, A. Origin of manganese in nannofossil calcite based on synchrotron nanoxrf and xanes, Marine Micropaleontology, Volume 163 (2021) | DOI

[26] Ullmann, C. V.; Hesselbo, S. P.; Korte, C. Tectonic forcing of Early to Middle Jurassic seawater Sr/Ca, Geology, Volume 41 (2013) no. 12, pp. 1211-1214 | DOI

[27] Vargas, C. d.; Aubry, M.-P.; Probert, I.; Young, J. Origin and Evolution of Coccolithophores: From Coastal Hunters to Oceanic Farmers, Falkowski PG, Knoll A (Eds.), Evolution of primary producers in the sea, Academic Press, 2007, pp. 251-286 | DOI

[28] Veizer, J. Chemical diagenesis of belemnite shells and possible consequences for paleotemperature determinations, Volume 147 (1974), pp. 91-111

[29] Young, J. R.; Bown, P. R. Higher classification of calcareous nannofossils, Journal of Nannoplankton Research, Volume 19 (1997), pp. 15-20

[30] Young, J. R.; Didymus, J. M.; Brown, P. R.; Prins, B.; Mann, S. Crystal assembly and phylogenetic evolution in heterococcoliths, Nature, Volume 356 (1992) no. 6369, pp. 516-518 | DOI

[31] Yu, J.; Elderfield, H.; Hönisch, B. B/Ca in planktonic foraminifera as a proxy for surface seawater pH, Paleoceanography, Volume 22 (2007) no. 2 | DOI

Cited by Sources: