Section: Genomics
Topic: Genetics/Genomics, Evolution

Fine-scale quantification of GC-biased gene conversion intensity in mammals

10.24072/pcjournal.22 - Peer Community Journal, Volume 1 (2021), article no. e17.

Get full text PDF Peer reviewed and recommended by PCI

GC-biased gene conversion (gBGC) is a molecular evolutionary force that favours GC over AT alleles irrespective of their fitness effect. Quantifying the variation in time and across genomes of its intensity is key to properly interpret patterns of molecular evolution. In particular, the existing literature is unclear regarding the relationship between gBGC strength and species effective population size, Ne. Here we analysed the nucleotide substitution pattern in coding sequences of closely related species of mammals, thus accessing a high resolution map of the intensity of gBGC. Our maximum likelihood approach shows that gBGC is pervasive, highly variable among species and genes, and of strength positively correlated with Ne in mammals. We estimate that gBGC explains up to 60% of the total amount of synonymous ATGC substitutions. We show that the fine-scale analysis of gBGC-induced nucleotide substitutions has the potential to inform on various aspects of molecular evolution, such as the distribution of fitness effects of mutations and the dynamics of recombination hotspots.

Published online:
DOI: 10.24072/pcjournal.22
Type: Research article
Galtier, Nicolas 1

1 CNRS, Univ. Montpellier, UMR5554 – Institut des Sciences de l’Evolution, Montpellier, France.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_22,
     author = {Galtier, Nicolas},
     title = {Fine-scale quantification of {GC-biased} gene conversion intensity in mammals},
     journal = {Peer Community Journal},
     eid = {e17},
     publisher = {Peer Community In},
     volume = {1},
     year = {2021},
     doi = {10.24072/pcjournal.22},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.22/}
}
TY  - JOUR
AU  - Galtier, Nicolas
TI  - Fine-scale quantification of GC-biased gene conversion intensity in mammals
JO  - Peer Community Journal
PY  - 2021
VL  - 1
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.22/
DO  - 10.24072/pcjournal.22
ID  - 10_24072_pcjournal_22
ER  - 
%0 Journal Article
%A Galtier, Nicolas
%T Fine-scale quantification of GC-biased gene conversion intensity in mammals
%J Peer Community Journal
%D 2021
%V 1
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.22/
%R 10.24072/pcjournal.22
%F 10_24072_pcjournal_22
Galtier, Nicolas. Fine-scale quantification of GC-biased gene conversion intensity in mammals. Peer Community Journal, Volume 1 (2021), article  no. e17. doi : 10.24072/pcjournal.22. https://peercommunityjournal.org/articles/10.24072/pcjournal.22/

Peer reviewed and recommended by PCI : 10.24072/pci.genomics.100012

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Auton, A.; Fledel-Alon, A.; Pfeifer, S.; Venn, O.; Ségurel, L.; Street, T.; Leffler, E. M.; Bowden, R.; Aneas, I.; Broxholme, J.; Humburg, P.; Iqbal, Z.; Lunter, G.; Maller, J.; Hernandez, R. D.; Melton, C.; Venkat, A.; Nobrega, M. A.; Bontrop, R.; Myers, S.; Donnelly, P.; Przeworski, M.; McVean, G. A Fine-Scale Chimpanzee Genetic Map from Population Sequencing, Science, Volume 336 (2012) no. 6078, pp. 193-198 | DOI

[2] Baudat, F.; de Massy, B. Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis, Chromosome Research, Volume 15 (2007) no. 5, pp. 565-577 | DOI

[3] Berglund, J.; Pollard, K. S.; Webster, M. T. Hotspots of Biased Nucleotide Substitutions in Human Genes, PLoS Biology, Volume 7 (2009) no. 1 | DOI

[4] Bolívar, P.; Mugal, C. F.; Rossi, M.; Nater, A.; Wang, M.; Dutoit, L.; Ellegren, H. Biased Inference of Selection Due to GC-Biased Gene Conversion and the Rate of Protein Evolution in Flycatchers When Accounting for It, Molecular Biology and Evolution, Volume 35 (2018) no. 10, pp. 2475-2486 | DOI

[5] Borges, R.; Szöllősi, G. J.; Kosiol, C. Quantifying GC-Biased Gene Conversion in Great Ape Genomes Using Polymorphism-Aware Models, Genetics, Volume 212 (2019) no. 4, pp. 1321-1336 | DOI

[6] Brunschwig, H.; Levi, L.; Ben-David, E.; Williams, R. W.; Yakir, B.; Shifman, S. Fine-Scale Maps of Recombination Rates and Hotspots in the Mouse Genome, Genetics, Volume 191 (2012) no. 3, pp. 757-764 | DOI

[7] Buffalo, V. Quantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin’s Paradox, eLife, Volume 10 (2021) | DOI

[8] Capra, J. A.; Hubisz, M. J.; Kostka, D.; Pollard, K. S.; Siepel, A. A Model-Based Analysis of GC-Biased Gene Conversion in the Human and Chimpanzee Genomes, PLoS Genetics, Volume 9 (2013) no. 8 | DOI

[9] Castellano, D.; Macià, M. C.; Tataru, P.; Bataillon, T.; Munch, K. Comparison of the Full Distribution of Fitness Effects of New Amino Acid Mutations Across Great Apes, Genetics, Volume 213 (2019) no. 3, pp. 953-966 | DOI

[10] Clément, Y.; Arndt, P. F. Substitution Patterns Are Under Different Influences in Primates and Rodents, Genome Biology and Evolution, Volume 3 (2011), pp. 236-245 | DOI

[11] Clément, Y.; Sarah, G.; Holtz, Y.; Homa, F.; Pointet, S.; Contreras, S.; Nabholz, B.; Sabot, F.; Sauné, L.; Ardisson, M.; Bacilieri, R.; Besnard, G.; Berger, A.; Cardi, C.; De Bellis, F.; Fouet, O.; Jourda, C.; Khadari, B.; Lanaud, C.; Leroy, T.; Pot, D.; Sauvage, C.; Scarcelli, N.; Tregear, J.; Vigouroux, Y.; Yahiaoui, N.; Ruiz, M.; Santoni, S.; Labouisse, J.-P.; Pham, J.-L.; David, J.; Glémin, S. Evolutionary forces affecting synonymous variations in plant genomes, PLOS Genetics, Volume 13 (2017) no. 5 | DOI

[12] Cole, F.; Baudat, F.; Grey, C.; Keeney, S.; de Massy, B.; Jasin, M. Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics, Nature Genetics, Volume 46 (2014) no. 10, pp. 1072-1080 | DOI

[13] Cole, F.; Kauppi, L.; Lange, J.; Roig, I.; Wang, R.; Keeney, S.; Jasin, M. Homeostatic control of recombination is implemented progressively in mouse meiosis, Nature Cell Biology, Volume 14 (2012) no. 4, pp. 424-430 | DOI

[14] Coop, G.; Myers, S. R. Live Hot, Die Young: Transmission Distortion in Recombination Hotspots, PLoS Genetics, Volume 3 (2007) no. 3 | DOI

[15] Corcoran, P.; Gossmann, T. I.; Barton, H. J.; Slate, J.; Zeng, K. Determinants of the Efficacy of Natural Selection on Coding and Noncoding Variability in Two Passerine Species, Genome Biology and Evolution, Volume 9 (2017) no. 11, pp. 2987-3007 | DOI

[16] Damuth, J. A Macroevolutionary Explanation for Energy Equivalence in the Scaling of Body Size and Population Density, The American Naturalist, Volume 169 (2007) no. 5, pp. 621-631 | DOI

[17] De Maio, N.; Schlötterer, C.; Kosiol, C. Linking Great Apes Genome Evolution across Time Scales Using Polymorphism-Aware Phylogenetic Models, Molecular Biology and Evolution, Volume 30 (2013) no. 10, pp. 2249-2262 | DOI

[18] Dreszer, T. R.; Wall, G. D.; Haussler, D.; Pollard, K. S. Biased clustered substitutions in the human genome: The footprints of male-driven biased gene conversion, Genome Research, Volume 17 (2007) no. 10, pp. 1420-1430 | DOI

[19] Duret, L.; Arndt, P. F. The Impact of Recombination on Nucleotide Substitutions in the Human Genome, PLoS Genetics, Volume 4 (2008) no. 5 | DOI

[20] Eyre-Walker, A. Problems with Parsimony in Sequences of Biased Base Composition, Journal of Molecular Evolution, Volume 47 (1998) no. 6, pp. 686-690 | DOI

[21] Eyre-Walker, A. Evidence of Selection on Silent Site Base Composition in Mammals: Potential Implications for the Evolution of Isochores and Junk DNA, Genetics, Volume 152 (1999) no. 2, pp. 675-683 | DOI

[22] Fabre, P.-H.; Hautier, L.; Dimitrov, D.; P Douzery, E. J. A glimpse on the pattern of rodent diversification: a phylogenetic approach, BMC Evolutionary Biology, Volume 12 (2012) no. 1 | DOI

[23] Fabre, P.-..; Rodrigues, A.; Douzery, E. Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA, Molecular Phylogenetics and Evolution, Volume 53 (2009) no. 3, pp. 808-825 | DOI

[24] Figuet, E.; Ballenghien, M.; Lartillot, N.; et al. Reconstruction of body mass evolution in the Cetartiodactyla and mammals using phylogenomic data, ioRxiv, peer–reviewed and recom- mended by Peer Community In Evolutionary Biology (2017) | DOI

[25] Figuet, E.; Ballenghien, M.; Romiguier, J.; Galtier, N. Biased Gene Conversion and GC-Content Evolution in the Coding Sequences of Reptiles and Vertebrates, Genome Biology and Evolution, Volume 7 (2014) no. 1, pp. 240-250 | DOI

[26] Figuet, E.; Romiguier, J.; Dutheil, J. Y.; Galtier, N. Mitochondrial DNA as a tool for reconstructing past life-history traits in mammals, Journal of Evolutionary Biology, Volume 27 (2014) no. 5, pp. 899-910 | DOI

[27] Galtier, N.; Bazin, E.; Bierne, N. GC-Biased Segregation of Noncoding Polymorphisms in Drosophila, Genetics, Volume 172 (2006) no. 1, pp. 221-228 | DOI

[28] Galtier, N.; Duret, L. Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution, Trends in Genetics, Volume 23 (2007) no. 6, pp. 273-277 | DOI

[29] Galtier, N.; Duret, L.; Glémin, S.; Ranwez, V. GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates, Trends in Genetics, Volume 25 (2009) no. 1, pp. 1-5 | DOI

[30] Galtier, N.; Piganeau, G.; Mouchiroud, D.; Duret, L. GC-Content Evolution in Mammalian Genomes: The Biased Gene Conversion Hypothesis, Genetics, Volume 159 (1999) no. 2, pp. 907-911 | DOI

[31] Galtier, N.; Rousselle, M. How Much Does Ne Vary Among Species?, Genetics, Volume 216 (2020) no. 2, pp. 559-572 | DOI

[32] Galtier, N.; Roux, C.; Rousselle, M.; Romiguier, J.; Figuet, E.; Glémin, S.; Bierne, N.; Duret, L. Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion, Molecular Biology and Evolution, Volume 35 (2018) no. 5, pp. 1092-1103 | DOI

[33] Gautier, M. La recombinaison comme moteur de l’évolution des génomes : caractérisation de la conversion génique biaisée chez la souris. PhD thesis. Ecole Doctorale E2M2, Université Claude Bernard Lyon 1., PhD thesis ((2019))

[34] Glémin, S.; Arndt, P. F.; Messer, P. W.; Petrov, D.; Galtier, N.; Duret, L. Quantification of GC-biased gene conversion in the human genome, Genome Research, Volume 25 (2015) no. 8, pp. 1215-1228 | DOI

[35] Guéguen, L.; Gaillard, S.; Boussau, B.; Gouy, M.; Groussin, M.; Rochette, N. C.; Bigot, T.; Fournier, D.; Pouyet, F.; Cahais, V.; Bernard, A.; Scornavacca, C.; Nabholz, B.; Haudry, A.; Dachary, L.; Galtier, N.; Belkhir, K.; Dutheil, J. Y. Bio++: Efficient Extensible Libraries and Tools for Computational Molecular Evolution, Molecular Biology and Evolution, Volume 30 (2013) no. 8, pp. 1745-1750 | DOI

[36] Hassanin, A.; Delsuc, F.; Ropiquet, A.; Hammer, C.; Jansen van Vuuren, B.; Matthee, C.; Ruiz-Garcia, M.; Catzeflis, F.; Areskoug, V.; Nguyen, T. T.; Couloux, A. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes, Comptes Rendus Biologies, Volume 335 (2012) no. 1, pp. 32-50 | DOI

[37] Huber, C. D.; Kim, B. Y.; Marsden, C. D.; Lohmueller, K. E. Determining the factors driving selective effects of new nonsynonymous mutations, Proceedings of the National Academy of Sciences, Volume 114 (2017) no. 17, pp. 4465-4470 | DOI

[38] Jeffreys, A. J.; May, C. A. Intense and highly localized gene conversion activity in human meiotic crossover hot spots, Nature Genetics, Volume 36 (2004) no. 2, pp. 151-156 | DOI

[39] Jensen-Seaman, M. I.; Furey, T. S.; Payseur, B. A.; Lu, Y.; Roskin, K. M.; Chen, C.-F.; Thomas, M. A.; Haussler, D.; Jacob, H. J. Comparative Recombination Rates in the Rat, Mouse, and Human Genomes, Genome Research, Volume 14 (2004) no. 4, pp. 528-538 | DOI

[40] Lachance, J.; Tishkoff, S. A. Biased Gene Conversion Skews Allele Frequencies in Human Populations, Increasing the Disease Burden of Recessive Alleles, The American Journal of Human Genetics, Volume 95 (2014) no. 4, pp. 408-420 | DOI

[41] Lartillot, N. Interaction between Selection and Biased Gene Conversion in Mammalian Protein-Coding Sequence Evolution Revealed by a Phylogenetic Covariance Analysis, Molecular Biology and Evolution, Volume 30 (2012) no. 2, pp. 356-368 | DOI

[42] Lartillot, N. Phylogenetic Patterns of GC-Biased Gene Conversion in Placental Mammals and the Evolutionary Dynamics of Recombination Landscapes, Molecular Biology and Evolution, Volume 30 (2013) no. 3, pp. 489-502 | DOI

[43] Lassalle, F.; Périan, S.; Bataillon, T.; Nesme, X.; Duret, L.; Daubin, V. GC-Content Evolution in Bacterial Genomes: The Biased Gene Conversion Hypothesis Expands, PLOS Genetics, Volume 11 (2015) no. 2 | DOI

[44] Latrille, T.; Duret, L.; Lartillot, N. The Red Queen model of recombination hot-spot evolution: a theoretical investigation, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 372 (2017) no. 1736 | DOI

[45] Lesecque, Y.; Glémin, S.; Lartillot, N.; Mouchiroud, D.; Duret, L. The Red Queen Model of Recombination Hotspots Evolution in the Light of Archaic and Modern Human Genomes, PLoS Genetics, Volume 10 (2014) no. 11 | DOI

[46] Li, R.; Bitoun, E.; Altemose, N.; Davies, R. W.; Davies, B.; Myers, S. R. A high-resolution map of non-crossover events reveals impacts of genetic diversity on mammalian meiotic recombination, Nature Communications, Volume 10 (2019) | DOI

[47] Long, H.; Sung, W.; Kucukyildirim, S.; Williams, E.; Miller, S. F.; Guo, W.; Patterson, C.; Gregory, C.; Strauss, C.; Stone, C.; Berne, C.; Kysela, D.; Shoemaker, W. R.; Muscarella, M. E.; Luo, H.; Lennon, J. T.; Brun, Y. V.; Lynch, M. Evolutionary determinants of genome-wide nucleotide composition, Nature Ecology & Evolution, Volume 2 (2018) no. 2, pp. 237-240 | DOI

[48] Magalhães, J. P.; Costa, J. A database of vertebrate longevity records and their relation to other life‐history traits, Journal of Evolutionary Biology, Volume 22 (2009) no. 8, pp. 1770-1774 | DOI

[49] Mancera, E.; Bourgon, R.; Brozzi, A.; Huber, W.; Steinmetz, L. M. High-resolution mapping of meiotic crossovers and non-crossovers in yeast, Nature, Volume 454 (2008) no. 7203, pp. 479-485 | DOI

[50] McVean, G. A. T.; Myers, S. R.; Hunt, S.; Deloukas, P.; Bentley, D. R.; Donnelly, P. The Fine-Scale Structure of Recombination Rate Variation in the Human Genome, Science, Volume 304 (2004) no. 5670, pp. 581-584 | DOI

[51] Meyer, M.; Kircher, M.; Gansauge, M.-T.; Li, H.; Racimo, F.; Mallick, S.; Schraiber, J. G.; Jay, F.; Prüfer, K.; de Filippo, C.; Sudmant, P. H.; Alkan, C.; Fu, Q.; Do, R.; Rohland, N.; Tandon, A.; Siebauer, M.; Green, R. E.; Bryc, K.; Briggs, A. W.; Stenzel, U.; Dabney, J.; Shendure, J.; Kitzman, J.; Hammer, M. F.; Shunkov, M. V.; Derevianko, A. P.; Patterson, N.; Andrés, A. M.; Eichler, E. E.; Slatkin, M.; Reich, D.; Kelso, J.; Pääbo, S. A High-Coverage Genome Sequence from an Archaic Denisovan Individual, Science, Volume 338 (2012) no. 6104, pp. 222-226 | DOI

[52] Milholland, B.; Dong, X.; Zhang, L.; Hao, X.; Suh, Y.; Vijg, J. Differences between germline and somatic mutation rates in humans and mice, Nature Communications, Volume 8 (2017) | DOI

[53] Moran, P. A. P. Notes on continuous stochastic phenomena, Biometrika, Volume 37 (1950) no. 1-2, pp. 17-23 | DOI

[54] Mouchiroud, D.; Gautier, C.; Bernardi, G. The compositional distribution of coding sequences and DNA molecules in humans and murids, Journal of Molecular Evolution, Volume 27 (1988) no. 4, pp. 311-320 | DOI

[55] Mugal, C. F.; Arndt, P. F.; Ellegren, H. Twisted Signatures of GC-Biased Gene Conversion Embedded in an Evolutionary Stable Karyotype, Molecular Biology and Evolution, Volume 30 (2013) no. 7, pp. 1700-1712 | DOI

[56] Mugal, C. F.; Kutschera, V. E.; Botero-Castro, F.; Wolf, J. B. W.; Kaj, I. Polymorphism Data Assist Estimation of the Nonsynonymous over Synonymous Fixation Rate Ratio ω for Closely Related Species, Molecular Biology and Evolution, Volume 37 (2020) no. 1, pp. 260-279 | DOI

[57] Myers, S.; Bowden, R.; Tumian, A.; Bontrop, R. E.; Freeman, C.; MacFie, T. S.; McVean, G.; Donnelly, P. Drive Against Hotspot Motifs in Primates Implicates the PRDM9 Gene in Meiotic Recombination, Science, Volume 327 (2010) no. 5967, pp. 876-879 | DOI

[58] Nabholz, B.; Kunstner, A.; Wang, R.; Jarvis, E. D.; Ellegren, H. Dynamic Evolution of Base Composition: Causes and Consequences in Avian Phylogenomics, Molecular Biology and Evolution, Volume 28 (2011) no. 8, pp. 2197-2210 | DOI

[59] Necşulea, A.; Popa, A.; Cooper, D. N.; Stenson, P. D.; Mouchiroud, D.; Gautier, C.; Duret, L. Meiotic recombination favors the spreading of deleterious mutations in human populations, Human Mutation, Volume 32 (2011) no. 2, pp. 198-206 | DOI

[60] Nikolaev, S. I.; Montoya-Burgos, J. I.; Popadin, K.; Parand, L.; Margulies, E. H.; Antonarakis, S. E. Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements, Proceedings of the National Academy of Sciences, Volume 104 (2007) no. 51, pp. 20443-20448 | DOI

[61] Pessia, E.; Popa, A.; Mousset, S.; Rezvoy, C.; Duret, L.; Marais, G. A. B. Evidence for Widespread GC-biased Gene Conversion in Eukaryotes, Genome Biology and Evolution, Volume 4 (2012) no. 7, pp. 675-682 | DOI

[62] Popadin, K.; Polishchuk, L. V.; Mamirova, L.; Knorre, D.; Gunbin, K. Accumulation of slightly deleterious mutations in mitochondrial protein-coding genes of large versus small mammals, Proceedings of the National Academy of Sciences, Volume 104 (2007) no. 33, pp. 13390-13395 | DOI

[63] Posada, D.; Buckley, T. R. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests, Systematic Biology, Volume 53 (2004) no. 5, pp. 793-808 | DOI

[64] Pracana, R.; Hargreaves, A. D.; Mulley, J. F.; Holland, P. W. H. Runaway GC Evolution in Gerbil Genomes, Molecular Biology and Evolution, Volume 37 (2020) no. 8, pp. 2197-2210 | DOI

[65] Pratto, F.; Brick, K.; Khil, P.; Smagulova, F.; Petukhova, G. V.; Camerini-Otero, R. D. Recombination initiation maps of individual human genomes, Science, Volume 346 (2014) no. 6211 | DOI

[66] Ratnakumar, A.; Mousset, S.; Glémin, S.; Berglund, J.; Galtier, N.; Duret, L.; Webster, M. T. Detecting positive selection within genomes: the problem of biased gene conversion, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 365 (2010) no. 1552, pp. 2571-2580 | DOI

[67] Robinson, M.; Gautier, C.; Mouchiroud, D. Evolution of isochores in rodents, Molecular Biology and Evolution, Volume 14 (1997) no. 8, pp. 823-828 | DOI

[68] Robinson, M. C.; Stone, E. A.; Singh, N. D. Population Genomic Analysis Reveals No Evidence for GC-Biased Gene Conversion in Drosophila melanogaster, Molecular Biology and Evolution, Volume 31 (2014) no. 2, pp. 425-433 | DOI

[69] Romiguier, J.; Figuet, E.; Galtier, N.; Douzery, E. J. P.; Boussau, B.; Dutheil, J. Y.; Ranwez, V. Fast and Robust Characterization of Time-Heterogeneous Sequence Evolutionary Processes Using Substitution Mapping, PLoS ONE, Volume 7 (2012) no. 3 | DOI

[70] Romiguier, J.; Lourenco, J.; Gayral, P.; Faivre, N.; Weinert, L. A.; Ravel, S.; Ballenghien, M.; Cahais, V.; Bernard, A.; Loire, E.; Keller, L.; Galtier, N. Population genomics of eusocial insects: the costs of a vertebrate-like effective population size, Journal of Evolutionary Biology, Volume 27 (2014) no. 3, pp. 593-603 | DOI

[71] Romiguier, J.; Ranwez, V.; Douzery, E. J.; Galtier, N. Contrasting GC-content dynamics across 33 mammalian genomes: Relationship with life-history traits and chromosome sizes, Genome Research, Volume 20 (2010) no. 8, pp. 1001-1009 | DOI

[72] Romiguier, J.; Ranwez, V.; Douzery, E.; Galtier, N. Genomic Evidence for Large, Long-Lived Ancestors to Placental Mammals, Molecular Biology and Evolution, Volume 30 (2012) no. 1, pp. 5-13 | DOI

[73] Rousselle, M.; Laverré, A.; Figuet, E.; Nabholz, B.; Galtier, N. Influence of Recombination and GC-biased Gene Conversion on the Adaptive and Nonadaptive Substitution Rate in Mammals versus Birds, Molecular Biology and Evolution, Volume 36 (2019) no. 3, pp. 458-471 | DOI

[74] Rousselle, M.; Simion, P.; Tilak, M.-K.; Figuet, E.; Nabholz, B.; Galtier, N. Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals, PLOS Genetics, Volume 16 (2020) no. 4 | DOI

[75] Scornavacca, C.; Belkhir, K.; Lopez, J.; Dernat, R.; Delsuc, F.; Douzery, E. J. P.; Ranwez, V. OrthoMaM v10: Scaling-Up Orthologous Coding Sequence and Exon Alignments with More than One Hundred Mammalian Genomes, Molecular Biology and Evolution, Volume 36 (2019) no. 4, pp. 861-862 | DOI

[76] Smith, T. C. A.; Arndt, P. F.; Eyre-Walker, A. Large scale variation in the rate of germ-line de novo mutation, base composition, divergence and diversity in humans, PLOS Genetics, Volume 14 (2018) no. 3 | DOI

[77] Spencer, C. C. A.; Deloukas, P.; Hunt, S.; Mullikin, J.; Myers, S.; Silverman, B.; Donnelly, P.; Bentley, D.; McVean, G. The Influence of Recombination on Human Genetic Diversity, PLoS Genetics, Volume 2 (2006) no. 9 | DOI

[78] Vanderpool, D.; Minh, B. Q.; Lanfear, R.; Hughes, D.; Murali, S.; Harris, R. A.; Raveendran, M.; Muzny, D. M.; Hibbins, M. S.; Williamson, R. J.; Gibbs, R. A.; Worley, K. C.; Rogers, J.; Hahn, M. W. Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression, PLOS Biology, Volume 18 (2020) no. 12 | DOI

[79] Wallberg, A.; Glémin, S.; Webster, M. T. Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee, Apis mellifera, PLOS Genetics, Volume 11 (2015) no. 4 | DOI

[80] Wang, R. J.; Thomas, G. W.; Raveendran, M.; Harris, R. A.; Doddapaneni, H.; Muzny, D. M.; Capitanio, J. P.; Radivojac, P.; Rogers, J.; Hahn, M. W. Paternal age in rhesus macaques is positively associated with germline mutation accumulation but not with measures of offspring sociability, Genome Research, Volume 30 (2020) no. 6, pp. 826-834 | DOI

[81] Webster, M. T.; Smith, N. G. Fixation biases affecting human SNPs, Trends in Genetics, Volume 20 (2004) no. 3, pp. 122-126 | DOI

[82] Welch, J. J.; Eyre-Walker, A.; Waxman, D. Divergence and Polymorphism Under the Nearly Neutral Theory of Molecular Evolution, Journal of Molecular Evolution, Volume 67 (2008) no. 4, pp. 418-426 | DOI

[83] Wilfert, L.; Gadau, J.; Schmid-Hempel, P. Variation in genomic recombination rates among animal taxa and the case of social insects, Heredity, Volume 98 (2007) no. 4, pp. 189-197 | DOI

[84] Williams, A. L.; Genovese, G.; Dyer, T.; Altemose, N.; Truax, K.; Jun, G.; Patterson, N.; Myers, S. R.; Curran, J. E.; Duggirala, R.; Blangero, J.; Reich, D.; Przeworski, M. Non-crossover gene conversions show strong GC bias and unexpected clustering in humans, eLife, Volume 4 (2015) | DOI

Cited by Sources: