Section: Genomics
Topic: Genetics/Genomics, Plant biology

Phenotypic and transcriptomic analyses reveal major differences between apple and pear scab nonhost resistance

10.24072/pcjournal.225 - Peer Community Journal, Volume 3 (2023), article no. e9.

Get full text PDF Peer reviewed and recommended by PCI
article image

Nonhost resistance is the outcome of most plant/pathogen interactions, but it has rarely been described in Rosaceous fruit species. Apple (Malus x domestica Borkh.) have a nonhost resistance to Venturia pyrina, the scab species attacking European pear (Pyrus communis L.). Reciprocally, P. communis have a nonhost resistance to Venturia inaequalis, the scab species attacking apple. The major objective of our study was to compare the scab nonhost resistance in apple and in European pear, at the phenotypic and transcriptomic levels.  Macro- and microscopic observations after reciprocal scab inoculations indicated that, after a similar germination step, nonhost apple/V. pyrina interaction remained nearly symptomless, whereas more hypersensitive reactions were observed during nonhost pear/V. inaequalis interaction. Comparative transcriptomic analyses of apple and pear nonhost interactions with V. pyrina and V. inaequalis, respectively, revealed differences. Very few differentially expressed genes were detected during apple/V. pyrina interaction, preventing the inferring of underlying molecular mechanisms. On the contrary, numerous genes were differentially expressed during pear/V. inaequalis interaction, allowing a deep deciphering. Pre-invasive defense, such as stomatal closure, could be inferred, as well as several post-invasive defense mechanisms (apoplastic reactive oxygen species accumulation, phytoalexin production and alterations of the epidermis composition). In addition, a comparative analysis between pear scab host and nonhost interactions indicated that, although specificities were observed, two major defense lines seems to be shared in these resistances: cell wall and cuticle potential modifications and phenylpropanoid pathway induction. This first deciphering of the molecular mechanisms underlying a nonhost scab resistance in pear offers new possibilities for the genetic engineering of sustainable scab resistance in this species. Concerning nonhost scab resistance in apple, further analyses must be considered with the aid of tools adapted to this resistance with very few cells engaged.

Published online:
DOI: 10.24072/pcjournal.225
Type: Research article

Vergne, Emilie 1; Chevreau, Elisabeth 1; Ravon, Elisa 1; Gaillard, Sylvain 1; Pelletier, Sandra 1; Bahut, Muriel 2; Perchepied, Laure 1

1 Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 – Angers, France
2 Univ Angers, SFR QUASAV, F-49000 – Angers, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Vergne, Emilie and Chevreau, Elisabeth and Ravon, Elisa and Gaillard, Sylvain and Pelletier, Sandra and Bahut, Muriel and Perchepied, Laure},
     title = {Phenotypic and transcriptomic analyses reveal major differences between apple and pear scab nonhost resistance},
     journal = {Peer Community Journal},
     eid = {e9},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.225},
     url = {}
AU  - Vergne, Emilie
AU  - Chevreau, Elisabeth
AU  - Ravon, Elisa
AU  - Gaillard, Sylvain
AU  - Pelletier, Sandra
AU  - Bahut, Muriel
AU  - Perchepied, Laure
TI  - Phenotypic and transcriptomic analyses reveal major differences between apple and pear scab nonhost resistance
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.225
ID  - 10_24072_pcjournal_225
ER  - 
%0 Journal Article
%A Vergne, Emilie
%A Chevreau, Elisabeth
%A Ravon, Elisa
%A Gaillard, Sylvain
%A Pelletier, Sandra
%A Bahut, Muriel
%A Perchepied, Laure
%T Phenotypic and transcriptomic analyses reveal major differences between apple and pear scab nonhost resistance
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.225
%F 10_24072_pcjournal_225
Vergne, Emilie; Chevreau, Elisabeth; Ravon, Elisa; Gaillard, Sylvain; Pelletier, Sandra; Bahut, Muriel; Perchepied, Laure. Phenotypic and transcriptomic analyses reveal major differences between apple and pear scab nonhost resistance. Peer Community Journal, Volume 3 (2023), article  no. e9. doi : 10.24072/pcjournal.225.

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.genomics.100025

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Adachi, H.; Yoshioka, H. Kinase-mediated orchestration of NADPH oxidase in plant immunity, Briefings in Functional Genomics, Volume 14 (2015) no. 4, pp. 253-259 | DOI

[2] Ali, S.; Ganai, B. A.; Kamili, A. N.; Bhat, A. A.; Mir, Z. A.; Bhat, J. A.; Tyagi, A.; Islam, S. T.; Mushtaq, M.; Yadav, P.; Rawat, S.; Grover, A. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance, Microbiological Research, Volume 212-213 (2018), pp. 29-37 | DOI

[3] Andreasson, E.; Jenkins, T.; Brodersen, P.; Thorgrimsen, S.; Petersen, N. H. T.; Zhu, S.; Qiu, J.-L.; Micheelsen, P.; Rocher, A.; Petersen, M.; Newman, M.-A.; Bjørn Nielsen, H.; Hirt, H.; Somssich, I.; Mattsson, O.; Mundy, J. The MAP kinase substrate MKS1 is a regulator of plant defense responses, The EMBO Journal, Volume 24 (2005) no. 14, pp. 2579-2589 | DOI

[4] Bacete, L.; Mélida, H.; Miedes, E.; Molina, A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses, The Plant Journal, Volume 93 (2018) no. 4, pp. 614-636 | DOI

[5] Berardini, T. Z.; Reiser, L.; Li, D.; Mezheritsky, Y.; Muller, R.; Strait, E.; Huala, E. The arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome, genesis, Volume 53 (2015) no. 8, pp. 474-485 | DOI

[6] Birkenbihl, R. P.; Diezel, C.; Somssich, I. E. Arabidopsis WRKY33 Is a Key Transcriptional Regulator of Hormonal and Metabolic Responses toward <i>Botrytis cinerea</i> Infection  , Plant Physiology, Volume 159 (2012) no. 1, pp. 266-285 | DOI

[7] Boller, T.; Felix, G. A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors, Annual Review of Plant Biology, Volume 60 (2009) no. 1, pp. 379-406 | DOI

[8] Bourdais, G.; Burdiak, P.; Gauthier, A.; Nitsch, L.; Salojärvi, J.; Rayapuram, C.; Idänheimo, N.; Hunter, K.; Kimura, S.; Merilo, E.; Vaattovaara, A.; Oracz, K.; Kaufholdt, D.; Pallon, A.; Anggoro, D. T.; Glów, D.; Lowe, J.; Zhou, J.; Mohammadi, O.; Puukko, T.; Albert, A.; Lang, H.; Ernst, D.; Kollist, H.; Brosché, M.; Durner, J.; Borst, J. W.; Collinge, D. B.; Karpiński, S.; Lyngkjær, M. F.; Robatzek, S.; Wrzaczek, M.; Kangasjärvi, J. Large-Scale Phenomics Identifies Primary and Fine-Tuning Roles for CRKs in Responses Related to Oxidative Stress, PLOS Genetics, Volume 11 (2015) no. 7 | DOI

[9] Boursiac, Y.; Lee, S. M.; Romanowsky, S.; Blank, R.; Sladek, C.; Chung, W. S.; Harper, J. F. Disruption of the Vacuolar Calcium-ATPases in Arabidopsis Results in the Activation of a Salicylic Acid-Dependent Programmed Cell Death Pathway, Plant Physiology, Volume 154 (2010) no. 3, pp. 1158-1171 | DOI

[10] Brosché, M.; Blomster, T.; Salojärvi, J.; Cui, F.; Sipari, N.; Leppälä, J.; Lamminmäki, A.; Tomai, G.; Narayanasamy, S.; Reddy, R. A.; Keinänen, M.; Overmyer, K.; Kangasjärvi, J. Transcriptomics and Functional Genomics of ROS-Induced Cell Death Regulation by RADICAL-INDUCED CELL DEATH1, PLoS Genetics, Volume 10 (2014) no. 2 | DOI

[11] Buron-Moles, G.; Wisniewski, M.; Viñas, I.; Teixidó, N.; Usall, J.; Droby, S.; Torres, R. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen, Journal of Proteomics, Volume 114 (2015), pp. 136-151 | DOI

[12] Campbell, C. S.; Evans, R. C.; Morgan, D. R.; Dickinson, T. A.; Arsenault, M. P. Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): Limited resolution of a complex evolutionary history, Plant Systematics and Evolution, Volume 266 (2007) no. 1-2, pp. 119-145 | DOI

[13] Celoy, R. M.; VanEtten, H. D. (+)-Pisatin biosynthesis: From (−) enantiomeric intermediates via an achiral 7,2′-dihydroxy-4′,5′-methylenedioxyisoflav-3-ene, Phytochemistry, Volume 98 (2014), pp. 120-127 | DOI

[14] Celton, J.; Gaillard, S.; Bruneau, M.; Pelletier, S.; Aubourg, S.; Martin‐Magniette, M.; Navarro, L.; Laurens, F.; Renou, J. Widespread anti‐sense transcription in apple is correlated with si <scp>RNA</scp> production and indicates a large potential for transcriptional and/or post‐transcriptional control, New Phytologist, Volume 203 (2014) no. 1, pp. 287-299 | DOI

[15] Cheng, Y. T.; Li, Y.; Huang, S.; Huang, Y.; Dong, X.; Zhang, Y.; Li, X. Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation, Proceedings of the National Academy of Sciences, Volume 108 (2011) no. 35, pp. 14694-14699 | DOI

[16] Chevalier, M.; Lespinasse, Y.; Renaudin, S. A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis), Plant Pathology, Volume 40 (1991) no. 2, pp. 249-256 | DOI

[17] Chevalier, M.; Bernard, C.; Tellier, M.; Audrain, C.; Durel, C. Host And Non-Host Interaction Of Venturia Inaequalis And Venturia Pirina On Pyrus Communis And Malus X Domestica, Acta Horticulturae (2004) no. 663, pp. 205-208 | DOI

[18] Chevalier, M.; Tellier, M.; Lespinasse, Y.; Bruyninckx, M.; Georgeault, S. Behaviour Studies Of New Strains Of Venturia Pirina Isolated From 'Conference' Cultivar On A Range Of Pear Cultivars, Acta Horticulturae (2008) no. 800, pp. 817-824 | DOI

[19] Chevalier, M.; Tellier, M.; Lespinasse, Y.; Caffier, V. How To Optimize The Venturia Pirina Inoculation On Pear Leaves In Greenhouse Conditions?, Acta Horticulturae (2008) no. 800, pp. 913-920 | DOI

[20] Coll, N. S.; Vercammen, D.; Smidler, A.; Clover, C.; Van Breusegem, F.; Dangl, J. L.; Epple, P. <i>Arabidopsis</i> Type I Metacaspases Control Cell Death, Science, Volume 330 (2010) no. 6009, pp. 1393-1397 | DOI

[21] Cosio, C.; Ranocha, P.; Francoz, E.; Burlat, V.; Zheng, Y.; Perry, S. E.; Ripoll, J.; Yanofsky, M.; Dunand, C. The class <scp>III</scp> peroxidase <scp>PRX</scp> 17 is a direct target of the <scp>MADS</scp> ‐box transcription factor AGAMOUS‐LIKE15 ( <scp>AGL</scp> 15) and participates in lignified tissue formation, New Phytologist, Volume 213 (2016) no. 1, pp. 250-263 | DOI

[22] Cova, V.; Paris, R.; Toller, C.; Patocchi, A.; Velasco, R.; Komjanc, M. Apple genes involved in the response to Venturia inaequalis and salicylic acid treatment, Scientia Horticulturae, Volume 226 (2017), pp. 157-172 | DOI

[23] Cui, F.; Brosché, M.; Lehtonen, M. T.; Amiryousefi, A.; Xu, E.; Punkkinen, M.; Valkonen, J. P.; Fujii, H.; Overmyer, K. Dissecting Abscisic Acid Signaling Pathways Involved in Cuticle Formation, Molecular Plant, Volume 9 (2016) no. 6, pp. 926-938 | DOI

[24] Depuydt, S.; Trenkamp, S.; Fernie, A. R.; Elftieh, S.; Renou, J.-P.; Vuylsteke, M.; Holsters, M.; Vereecke, D. An Integrated Genomics Approach to Define Niche Establishment by<i>Rhodococcus fascians</i>       , Plant Physiology, Volume 149 (2008) no. 3, pp. 1366-1386 | DOI

[25] Dobritzsch, M.; Lübken, T.; Eschen-Lippold, L.; Gorzolka, K.; Blum, E.; Matern, A.; Marillonnet, S.; Böttcher, C.; Dräger, B.; Rosahl, S. MATE Transporter-Dependent Export of Hydroxycinnamic Acid Amides, The Plant Cell, Volume 28 (2016) no. 2, pp. 583-596 | DOI

[26] Faize, M.; Malnoy, M.; Dupuis, F.; Chevalier, M.; Parisi, L.; Chevreau, E. Chitinases of <i>Trichoderma atroviride</i> Induce Scab Resistance and Some Metabolic Changes in Two Cultivars of Apple, Phytopathology®, Volume 93 (2003) no. 12, pp. 1496-1504 | DOI

[27] Falcone Ferreyra, M. L.; Emiliani, J.; Rodriguez, E. J.; Campos-Bermudez, V. A.; Grotewold, E.; Casati, P. The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions, Plant Physiology, Volume 169 (2015) no. 2, pp. 1090-1107 | DOI

[28] Fernández-Pérez, F.; Vivar, T.; Pomar, F.; Pedreño, M. A.; Novo-Uzal, E. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana, Journal of Plant Physiology, Volume 175 (2015), pp. 86-94 | DOI

[29] Fernández-Pérez, F.; Pomar, F.; Pedreño, M. A.; Novo-Uzal, E. The suppression of<i>AtPrx52</i>affects fibers but not xylem lignification in<i>Arabidopsis</i>by altering the proportion of syringyl units, Physiologia Plantarum, Volume 154 (2014) no. 3, pp. 395-406 | DOI

[30] Fich, E. A.; Segerson, N. A.; Rose, J. K. The Plant Polyester Cutin: Biosynthesis, Structure, and Biological Roles, Annual Review of Plant Biology, Volume 67 (2016) no. 1, pp. 207-233 | DOI

[31] Fink, W.; Haug, M.; Deising, H.; Mendgen, K. Early defence responses of cowpea (Vigna sinensis L.) induced by non-pathogenic rust fungi, Planta, Volume 185 (1991) no. 2 | DOI

[32] Fink, L.; Kwapiszewska, G.; Wilhelm, J.; Bohle, R. M. Laser-microdissection for cell type- and compartment-specific analyses on genomic and proteomic level, Experimental and Toxicologic Pathology, Volume 57 (2006), pp. 25-29 | DOI

[33] Fonseca, J. P.; Mysore, K. S. Genes involved in nonhost disease resistance as a key to engineer durable resistance in crops, Plant Science, Volume 279 (2019), pp. 108-116 | DOI

[34] Förster, S.; Schmidt, L. K.; Kopic, E.; Anschütz, U.; Huang, S.; Schlücking, K.; Köster, P.; Waadt, R.; Larrieu, A.; Batistič, O.; Rodriguez, P. L.; Grill, E.; Kudla, J.; Becker, D. Wounding-Induced Stomatal Closure Requires Jasmonate-Mediated Activation of GORK K+ Channels by a Ca2+ Sensor-Kinase CBL1-CIPK5 Complex, Developmental Cell, Volume 48 (2019) no. 1 | DOI

[35] Gao, X.; Chen, X.; Lin, W.; Chen, S.; Lu, D.; Niu, Y.; Li, L.; Cheng, C.; McCormack, M.; Sheen, J.; Shan, L.; He, P. Bifurcation of Arabidopsis NLR Immune Signaling via Ca2+-Dependent Protein Kinases, PLoS Pathogens, Volume 9 (2013) no. 1 | DOI

[36] Genot, B.; Lang, J.; Berriri, S.; Garmier, M.; Gilard, F.; Pateyron, S.; Haustraete, K.; Van Der Straeten, D.; Hirt, H.; Colcombet, J. Constitutively Active Arabidopsis MAP Kinase 3 Triggers Defense Responses Involving Salicylic Acid and SUMM2 Resistance Protein, Plant Physiology, Volume 174 (2017) no. 2, pp. 1238-1249 | DOI

[37] Giesemann, A.; Biehl, B.; Lieberei, R. Identification of Scopoletin as a Phytoalexin of the Rubber Tree Hevea brasiliensis, Journal of Phytopathology, Volume 117 (1986) no. 4, pp. 373-376 | DOI

[38] Gill, U. S.; Lee, S.; Mysore, K. S. Host Versus Nonhost Resistance: Distinct Wars with Similar Arsenals, Phytopathology®, Volume 105 (2015) no. 5, pp. 580-587 | DOI

[39] González-Domínguez, E.; Armengol, J.; Rossi, V. Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review, Frontiers in Plant Science, Volume 8 (2017) | DOI

[40] Guerringue, Y.; Thomine, S.; Frachisse, J.-M. Sensing and transducing forces in plants with MSL10 and DEK1 mechanosensors, FEBS Letters, Volume 592 (2018) no. 12, pp. 1968-1979 | DOI

[41] Gusberti, M.; Gessler, C.; Broggini, G. A. L. RNA-Seq Analysis Reveals Candidate Genes for Ontogenic Resistance in Malus-Venturia Pathosystem, PLoS ONE, Volume 8 (2013) no. 11 | DOI

[42] Hoch, H.; Galvani, C.; Szarowski, D.; Turner, J. Two new fluorescent dyes applicable for visualization of fungal cell walls, Mycologia, Volume 97 (2005) no. 3, pp. 580-588 | DOI

[43] Hong, G.-J.; Xue, X.-Y.; Mao, Y.-B.; Wang, L.-J.; Chen, X.-Y. <i>Arabidopsis</i> MYC2 Interacts with DELLA Proteins in Regulating Sesquiterpene Synthase Gene Expression, The Plant Cell, Volume 24 (2012) no. 6, pp. 2635-2648 | DOI

[44] Hou, C.; Tian, W.; Kleist, T.; He, K.; Garcia, V.; Bai, F.; Hao, Y.; Luan, S.; Li, L. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes, Cell Research, Volume 24 (2014) no. 5, pp. 632-635 | DOI

[45] Hu, X.; Reddy, A. Plant Molecular Biology, 34 (1997) no. 6, pp. 949-959 | DOI

[46] Huang, J.; Sun, Y.; Orduna, A. R.; Jetter, R.; Li, X. The Mediator kinase module serves as a positive regulator of salicylic acid accumulation and systemic acquired resistance, The Plant Journal, Volume 98 (2019) no. 5, pp. 842-852 | DOI

[47] Huby, E.; Napier, J. A.; Baillieul, F.; Michaelson, L. V.; Dhondt‐Cordelier, S. Sphingolipids: towards an integrated view of metabolism during the plant stress response, New Phytologist, Volume 225 (2019) no. 2, pp. 659-670 | DOI

[48] Jeong, J. S.; Jung, C.; Seo, J. S.; Kim, J.-K.; Chua, N.-H. The Deubiquitinating Enzymes UBP12 and UBP13 Positively Regulate MYC2 Levels in Jasmonate Responses, The Plant Cell, Volume 29 (2017) no. 6, pp. 1406-1424 | DOI

[49] Jiang, S.; Park, P.; Ishii, H. Penetration Behaviour of <i>Venturia nashicola</i> , Associated with Hydrogen Peroxide Generation, in Asian and European Pear Leaves, Journal of Phytopathology, Volume 162 (2014) no. 11-12, pp. 770-778 | DOI

[50] Joubès, J.; Raffaele, S.; Bourdenx, B.; Garcia, C.; Laroche-Traineau, J.; Moreau, P.; Domergue, F.; Lessire, R. The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling, Plant Molecular Biology, Volume 67 (2008) no. 5, pp. 547-566 | DOI

[51] Kadota, Y.; Shirasu, K.; Zipfel, C. Regulation of the NADPH Oxidase RBOHD During Plant Immunity, Plant and Cell Physiology, Volume 56 (2015) no. 8, pp. 1472-1480 | DOI

[52] Kaurilind, E.; Xu, E.; Brosché, M. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana, BMC Genomics, Volume 16 (2015) no. 1 | DOI

[53] Kawasaki, T.; Nam, J.; Boyes, D. C.; Holt, B. F.; Hubert, D. A.; Wiig, A.; Dangl, J. L. A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response, The Plant Journal, Volume 44 (2005) no. 2, pp. 258-270 | DOI

[54] Khafif, M.; Balagué, C.; Huard-Chauveau, C.; Roby, D. An essential role for the VASt domain of the Arabidopsis VAD1 protein in the regulation of defense and cell death in response to pathogens, PLOS ONE, Volume 12 (2017) no. 7 | DOI

[55] Leblay, C.; Chevreau, E.; Raboin, L. M. Adventitious shoot regeneration from in vitro leaves of several pear cultivars (Pyrus communis L.), Plant Cell Tissue and Organ Culture (PCTOC), Volume 25 (1991) no. 2, pp. 99-105 | DOI

[56] Lee, M. W.; Jelenska, J.; Greenberg, J. T. Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1, The Plant Journal, Volume 54 (2008) no. 3, pp. 452-465 | DOI

[57] Lee, S. B.; Suh, M. C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species, Plant Cell Reports, Volume 34 (2015) no. 4, pp. 557-572 | DOI

[58] Lee, H.-A.; Lee, H.-Y.; Seo, E.; Lee, J.; Kim, S.-B.; Oh, S.; Choi, E.; Choi, E.; Lee, S. E.; Choi, D. Current Understandings of Plant Nonhost Resistance, Molecular Plant-Microbe Interactions®, Volume 30 (2017) no. 1, pp. 5-15 | DOI

[59] Lee, M.; Jeon, H. S.; Kim, H. G.; Park, O. K. An <i>Arabidopsis</i> NAC transcription factor NAC4 promotes pathogen‐induced cell death under negative regulation by microRNA164, New Phytologist, Volume 214 (2016) no. 1, pp. 343-360 | DOI

[60] Lema Asqui, S.; Vercammen, D.; Serrano, I.; Valls, M.; Rivas, S.; Van Breusegem, F.; Conlon, F. L.; Dangl, J. L.; Coll, N. S. AtSERPIN1 is an inhibitor of the metacaspase AtMC1-mediated cell death and autocatalytic processing <i>in planta</i>, New Phytologist, Volume 218 (2017) no. 3, pp. 1156-1166 | DOI

[61] Lespinasse, Y.; Durel, C.; Laurens, F.; Chevalier, M.; Pinet, C.; Parisi, L. A European Project : D.A.R.E. - Durable Apple Resistance In Europe (Fair5 Ct97-3898) Durable Resistance Of Apple To Scab And Powdery-Mildewone Step More Towards An Environmental Friendly Orchard, Acta Horticulturae (2000) no. 538, pp. 197-200 | DOI

[62] Li, J.; Brader, G.; Palva, E. T. The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense[W], The Plant Cell, Volume 16 (2004) no. 2, pp. 319-331 | DOI

[63] Li, C.; Schilmiller, A. L.; Liu, G.; Lee, G. I.; Jayanty, S.; Sageman, C.; Vrebalov, J.; Giovannoni, J. J.; Yagi, K.; Kobayashi, Y.; Howe, G. A. Role of β-Oxidation in Jasmonate Biosynthesis and Systemic Wound Signaling in Tomato, The Plant Cell, Volume 17 (2005) no. 3, pp. 971-986 | DOI

[64] Li, J.; Brader, G.; Kariola, T.; Tapio Palva, E. WRKY70 modulates the selection of signaling pathways in plant defense, The Plant Journal, Volume 46 (2006) no. 3, pp. 477-491 | DOI

[65] Li, Y.; Beisson, F.; Koo, A. J. K.; Molina, I.; Pollard, M.; Ohlrogge, J. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers, Proceedings of the National Academy of Sciences, Volume 104 (2007) no. 46, pp. 18339-18344 | DOI

[66] Li, J.; Zhong, R.; Palva, E. T. WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis, PLOS ONE, Volume 12 (2017) no. 8 | DOI

[67] Lim, G.-H.; Singhal, R.; Kachroo, A.; Kachroo, P. Fatty Acid– and Lipid-Mediated Signaling in Plant Defense, Annual Review of Phytopathology, Volume 55 (2017) no. 1, pp. 505-536 | DOI

[68] Livak, K. J.; Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method, Methods, Volume 25 (2001) no. 4, pp. 402-408 | DOI

[69] Luo, H.; Laluk, K.; Lai, Z.; Veronese, P.; Song, F.; Mengiste, T. The Arabidopsis Botrytis Susceptible1 Interactor Defines a Subclass of RING E3 Ligases That Regulate Pathogen and Stress Responses, Plant Physiology, Volume 154 (2010) no. 4, pp. 1766-1782 | DOI

[70] Mary-Huard, T.; Aubert, J.; Mansouri-Attia, N.; Sandra, O.; Daudin, J.-J. Statistical methodology for the analysis of dye-switch microarray experiments, BMC Bioinformatics, Volume 9 (2008) no. 1 | DOI

[71] Masoodi, K. Z.; Ahmed, N.; Mir, M. A.; Bhat, B.; Shafi, A.; Mansoor, S.; Rasool, R. S.; Yaseen, M.; Dar, Z. A.; Mir, J. I.; Andrabi, S. M.; Ganai, N. A. Comparative transcriptomics unravels new genes imparting scab resistance in apple (Malus x domestica Borkh.), Functional &amp; Integrative Genomics, Volume 22 (2022) no. 6, pp. 1315-1330 | DOI

[72] Mestre, P.; Arista, G.; Piron, M.-C.; Rustenholz, C.; Ritzenthaler, C.; Merdinoglu, D.; Chich, J.-F. Identification of a<i>Vitis vinifera</i>endo-<b>β</b>-1,3-glucanase with antimicrobial activity against<i>Plasmopara viticola</i>, Molecular Plant Pathology, Volume 18 (2016) no. 5, pp. 708-719 | DOI

[73] Miedes, E.; Vanholme, R.; Boerjan, W.; Molina, A. The role of the secondary cell wall in plant resistance to pathogens, Frontiers in Plant Science, Volume 5 (2014) | DOI

[74] Muroi, A.; Ishihara, A.; Tanaka, C.; Ishizuka, A.; Takabayashi, J.; Miyoshi, H.; Nishioka, T. Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana, Planta, Volume 230 (2009) no. 3, pp. 517-527 | DOI

[75] Najafi, J.; Brembu, T.; Vie, A. K.; Viste, R.; Winge, P.; Somssich, I. E.; Bones, A. M. PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3) modulates immunity in Arabidopsis thaliana, Journal of Experimental Botany (2019) | DOI

[76] Nurmberg, P. L.; Knox, K. A.; Yun, B.-W.; Morris, P. C.; Shafiei, R.; Hudson, A.; Loake, G. J. The developmental selector <i>AS1</i> is an evolutionarily conserved regulator of the plant immune response, Proceedings of the National Academy of Sciences, Volume 104 (2007) no. 47, pp. 18795-18800 | DOI

[77] O’Brien, J. A.; Daudi, A.; Butt, V. S.; Paul Bolwell, G. Reactive oxygen species and their role in plant defence and cell wall metabolism, Planta, Volume 236 (2012) no. 3, pp. 765-779 | DOI

[78] Paris, R.; Cova, V.; Pagliarani, G.; Tartarini, S.; Komjanc, M.; Sansavini, S. Expression profiling in HcrVf2-transformed apple plants in response to Venturia inaequalis, Tree Genetics &amp; Genomes, Volume 5 (2008) no. 1, pp. 81-91 | DOI

[79] Paris, R.; Dondini, L.; Zannini, G.; Bastia, D.; Marasco, E.; Gualdi, V.; Rizzi, V.; Piffanelli, P.; Mantovani, V.; Tartarini, S. dHPLC efficiency for semi-automated cDNA-AFLP analyses and fragment collection in the apple scab-resistance gene model, Planta, Volume 235 (2012) no. 5, pp. 1065-1080 | DOI

[80] Parisi, L. Pathogenicity of<i>Venturia inaequalis</i>Strains of Race 6 on Apple Clones (<i>Malus</i>sp.), Plant Disease, Volume 80 (1996) no. 10 | DOI

[81] Pelletier S. AnaDiff: A tool for differential analysis of microarrays and RNAseq (v4.3). 2022. Zenodo.

[82] Perchepied, L.; Chevreau, E.; Ravon, E.; Gaillard, S.; Pelletier, S.; Bahut, M.; Berthelot, P.; Cournol, R.; Schouten, H. J.; Vergne, E. Successful intergeneric transfer of a major apple scab resistance gene (Rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species, BMC Genomics, Volume 22 (2021) no. 1 | DOI

[83] Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Research, Volume 29 (2001) no. 9 | DOI

[84] Pieterse, C. M.; Van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S. C. Hormonal Modulation of Plant Immunity, Annual Review of Cell and Developmental Biology, Volume 28 (2012) no. 1, pp. 489-521 | DOI

[85] Potter, D.; Eriksson, T.; Evans, R. C.; Oh, S.; Smedmark, J. E. E.; Morgan, D. R.; Kerr, M.; Robertson, K. R.; Arsenault, M.; Dickinson, T. A.; Campbell, C. S. Phylogeny and classification of Rosaceae, Plant Systematics and Evolution, Volume 266 (2007) no. 1-2, pp. 5-43 | DOI

[86] Provart N , Zhu T. A Browser-based Functional Classification SuperViewer for Arabidopsis Genomics. Currents in Computational Molecular Biology. 2003;271–272.

[87] Qi, J.; Wang, J.; Gong, Z.; Zhou, J.-M. Apoplastic ROS signaling in plant immunity, Current Opinion in Plant Biology, Volume 38 (2017), pp. 92-100 | DOI

[88] Ranade, S. S.; Seipel, G.; Gorzsás, A.; García‐Gil, M. R. Enhanced lignin synthesis and ecotypic variation in defense‐related gene expression in response to shade in Norway spruce, Plant, Cell amp; Environment, Volume 45 (2022) no. 9, pp. 2671-2681 | DOI

[89] Ritchie, M. E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C. W.; Shi, W.; Smyth, G. K. limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, Volume 43 (2015) no. 7 | DOI

[90] Rodriguez-Saona, C. R.; Polashock, J.; Malo, E. A. Jasmonate-Mediated Induced Volatiles in the American Cranberry, Vaccinium macrocarpon: From Gene Expression to Organismal Interactions, Frontiers in Plant Science, Volume 4 (2013) | DOI

[91] Ronzier, E.; Corratgé-Faillie, C.; Sanchez, F.; Prado, K.; Brière, C.; Leonhardt, N.; Thibaud, J.-B.; Xiong, T. C. CPK13, a Noncanonical Ca2+-Dependent Protein Kinase, Specifically Inhibits KAT2 and KAT1 Shaker K+ Channels and Reduces Stomatal Opening    , Plant Physiology, Volume 166 (2014) no. 1, pp. 314-326 | DOI

[92] Rossman, A.; Castlebury, L.; Aguirre-Hudson, B.; Berndt, R.; Edwards, J. (2647–2651) Proposals to conserve the names i Venturia acerina/i against i Cladosporium humile/i; i Venturia borealis/i against i Torula maculicola/i; i Venturia carpophila/i against i Fusicladium amygdali/i and i Cladosporium/i i americanum/i; i Sphaerella inaequalis/i (iVenturia inaequalis/i) against i Spilocaea pomi/i, i Fumago mali/i,i Actinonema crataegi/i, i Cladosporium dendriticum/i, i Asteroma mali/i, and i Scolicotrichum venosum/i; and i Venturia pyrina/i against i Helminthosporium pyrorum/i, i Fusicladium virescens/i,i F. fuscescens/i, i Cladosporium polymorphum/i and i Passalora pomi/i (iAscomycota/i: i Dothideomycetes/i), Taxon, Volume 67 (2018) no. 6, pp. 1209-1211 | DOI

[93] Santamaria, M.; Thomson, C. J.; Read, N. D.; Loake, G. J. Plant Molecular Biology, 47 (2001) no. 5, pp. 641-652 | DOI

[94] Saucedo‐García, M.; Guevara‐García, A.; González‐Solís, A.; Cruz‐García, F.; Vázquez‐Santana, S.; Markham, J. E.; Lozano‐Rosas, M. G.; Dietrich, C. R.; Ramos‐Vega, M.; Cahoon, E. B.; Gavilanes‐Ruíz, M. MPK6, sphinganine and the iLCB2a/i gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in iArabidopsis/i, New Phytologist, Volume 191 (2011) no. 4, pp. 943-957 | DOI

[95] Segond, D.; Dellagi, A.; Lanquar, V.; Rigault, M.; Patrit, O.; Thomine, S.; Expert, D. iNRAMP/igenes function iniArabidopsis thaliana/iresistance toiErwinia chrysanthemi/iinfection, The Plant Journal, Volume 58 (2009) no. 2, pp. 195-207 | DOI

[96] Sikorskaite-Gudziuniene, S.; Haimi, P.; Gelvonauskiene, D.; Stanys, V. Nuclear proteome analysis of apple cultivar ‘Antonovka’ accessions in response to apple scab (Venturia inaequalis), European Journal of Plant Pathology, Volume 148 (2016) no. 4, pp. 771-784 | DOI

[97] Simanshu, D. K.; Zhai, X.; Munch, D.; Hofius, D.; Markham, J. E.; Bielawski, J.; Bielawska, A.; Malinina, L.; Molotkovsky, J. G.; Mundy, J. W.; Patel, D. J.; Brown, R. E. Arabidopsis Accelerated Cell Death 11, ACD11, Is a Ceramide-1-Phosphate Transfer Protein and Intermediary Regulator of Phytoceramide Levels, Cell Reports, Volume 6 (2014) no. 2, pp. 388-399 | DOI

[98] Simon, C.; Langlois-Meurinne, M.; Didierlaurent, L.; Chaouch, S.; Bellvert, F.; Massoud, K.; Garmier, M.; Thareau, V.; Comte, G.; Noctor, G.; Saindrenan, P. The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to iP/iiseudomonas syringae/i pv.itomato/i, Plant, Cell amp; Environment, Volume 37 (2013) no. 5, pp. 1114-1129 | DOI

[99] Smyth, G. K. limma: Linear Models for Microarray Data, Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Springer-Verlag, New York, pp. 397-420 | DOI

[100] Song, J. T.; Koo, Y. J.; Seo, H. S.; Kim, M. C.; Choi, Y. D.; Kim, J. H. Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to Pseudomonas syringae, Phytochemistry, Volume 69 (2008) no. 5, pp. 1128-1134 | DOI

[101] Song, P.-P.; Zhao, J.; Liu, Z.-L.; Duan, Y.-B.; Hou, Y.-P.; Zhao, C.-Q.; Wu, M.; Wei, M.; Wang, N.-H.; Lv, Y.; Han, Z.-J. Evaluation of antifungal activities and structure-activity relationships of coumarin derivatives, Pest Management Science, Volume 73 (2016) no. 1, pp. 94-101 | DOI

[102] Stehmann, C.; Pennycook, S.; Plummer, K. M. Molecular Identification of a Sexual Interloper: The Pear Pathogen, iVenturia pirina/i, has Sex on Apple, Phytopathology®, Volume 91 (2001) no. 7, pp. 633-641 | DOI

[103] Sun, T.; Nitta, Y.; Zhang, Q.; Wu, D.; Tian, H.; Lee, J. S.; Zhang, Y. Antagonistic interactions between two scpMAP/scp kinase cascades in plant development and immune signaling, EMBO reports, Volume 19 (2018) no. 7 | DOI

[104] Tetali, S. D. Terpenes and isoprenoids: a wealth of compounds for global use, Planta, Volume 249 (2018) no. 1, pp. 1-8 | DOI

[105] Thimm, O.; Bläsing, O.; Gibon, Y.; Nagel, A.; Meyer, S.; Krüger, P.; Selbig, J.; Müller, L. A.; Rhee, S. Y.; Stitt, M. mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes, The Plant Journal, Volume 37 (2004) no. 6, pp. 914-939 | DOI

[106] Tokunaga, N.; Kaneta, T.; Sato, S.; Sato, Y. Analysis of expression profiles of three peroxidase genes associated with lignification iniArabidopsis thaliana/i, Physiologia Plantarum, Volume 136 (2009) no. 2, pp. 237-249 | DOI

[107] Trapalis, M.; Li, S. F.; Parish, R. W. The Arabidopsis GASA10 gene encodes a cell wall protein strongly expressed in developing anthers and seeds, Plant Science, Volume 260 (2017), pp. 71-79 | DOI

[108] Truman, W.; Sreekanta, S.; Lu, Y.; Bethke, G.; Tsuda, K.; Katagiri, F.; Glazebrook, J. The CALMODULIN-BINDING PROTEIN60 Family Includes Both Negative and Positive Regulators of Plant Immunity, PLANT PHYSIOLOGY, Volume 163 (2013) no. 4, pp. 1741-1751 | DOI

[109] Tsuda, K.; Sato, M.; Stoddard, T.; Glazebrook, J.; Katagiri, F. Network Properties of Robust Immunity in Plants, PLoS Genetics, Volume 5 (2009) no. 12 | DOI

[110] Van Moerkercke, A.; Duncan, O.; Zander, M.; Šimura, J.; Broda, M.; Vanden Bossche, R.; Lewsey, M. G.; Lama, S.; Singh, K. B.; Ljung, K.; Ecker, J. R.; Goossens, A.; Millar, A. H.; Van Aken, O. A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels, Proceedings of the National Academy of Sciences, Volume 116 (2019) no. 46, pp. 23345-23356 | DOI

[111] Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Genome Biology, 3 (2002) no. 7 | DOI

[112] Velasco, R.; Zharkikh, A.; Affourtit, J.; Dhingra, A.; Cestaro, A.; Kalyanaraman, A.; Fontana, P.; Bhatnagar, S. K.; Troggio, M.; Pruss, D.; Salvi, S.; Pindo, M.; Baldi, P.; Castelletti, S.; Cavaiuolo, M.; Coppola, G.; Costa, F.; Cova, V.; Dal Ri, A.; Goremykin, V.; Komjanc, M.; Longhi, S.; Magnago, P.; Malacarne, G.; Malnoy, M.; Micheletti, D.; Moretto, M.; Perazzolli, M.; Si-Ammour, A.; Vezzulli, S.; Zini, E.; Eldredge, G.; Fitzgerald, L. M.; Gutin, N.; Lanchbury, J.; Macalma, T.; Mitchell, J. T.; Reid, J.; Wardell, B.; Kodira, C.; Chen, Z.; Desany, B.; Niazi, F.; Palmer, M.; Koepke, T.; Jiwan, D.; Schaeffer, S.; Krishnan, V.; Wu, C.; Chu, V. T.; King, S. T.; Vick, J.; Tao, Q.; Mraz, A.; Stormo, A.; Stormo, K.; Bogden, R.; Ederle, D.; Stella, A.; Vecchietti, A.; Kater, M. M.; Masiero, S.; Lasserre, P.; Lespinasse, Y.; Allan, A. C.; Bus, V.; Chagné, D.; Crowhurst, R. N.; Gleave, A. P.; Lavezzo, E.; Fawcett, J. A.; Proost, S.; Rouzé, P.; Sterck, L.; Toppo, S.; Lazzari, B.; Hellens, R. P.; Durel, C.-E.; Gutin, A.; Bumgarner, R. E.; Gardiner, S. E.; Skolnick, M.; Egholm, M.; Van de Peer, Y.; Salamini, F.; Viola, R. The genome of the domesticated apple (Malus × domestica Borkh.), Nature Genetics, Volume 42 (2010) no. 10, pp. 833-839 | DOI

[113] Veley, K. M.; Maksaev, G.; Frick, E. M.; January, E.; Kloepper, S. C.; Haswell, E. S. iArabidopsis/i MSL10 Has a Regulated Cell Death Signaling Activity That Is Separable from Its Mechanosensitive Ion Channel Activity  , The Plant Cell, Volume 26 (2014) no. 7, pp. 3115-3131 | DOI

[114] Vergne E. Expression data for apple Rvi6 host resistance and nonhost resistance against scab. 2020a.

[115] Vergne E. Expression data for 1) pear host resistance allowed by transgenic expression of apple Rvi6 resistance gene and 2) nonhost resistance against scab. 2020b.

[116] Vilanova, L.; Teixidó, N.; Torres, R.; Usall, J.; Viñas, I. The infection capacity of P. expansum and P. digitatum on apples and histochemical analysis of host response, International Journal of Food Microbiology, Volume 157 (2012) no. 3, pp. 360-367 | DOI

[117] Vilanova, L.; Vall-llaura, N.; Torres, R.; Usall, J.; Teixidó, N.; Larrigaudière, C.; Giné-Bordonaba, J. Penicillium expansum (compatible) and Penicillium digitatum (non-host) pathogen infection differentially alter ethylene biosynthesis in apple fruit, Plant Physiology and Biochemistry, Volume 120 (2017), pp. 132-143 | DOI

[118] Vincill, E. D.; Bieck, A. M.; Spalding, E. P. Ca2+ Conduction by an Amino Acid-Gated Ion Channel Related to Glutamate Receptors  , Plant Physiology, Volume 159 (2012) no. 1, pp. 40-46 | DOI

[119] Vlot, A. C.; Dempsey, D. A.; Klessig, D. F. Salicylic Acid, a Multifaceted Hormone to Combat Disease, Annual Review of Phytopathology, Volume 47 (2009) no. 1, pp. 177-206 | DOI

[120] Vorwieger, A.; Gryczka, C.; Czihal, A.; Douchkov, D.; Tiedemann, J.; Mock, H.-P.; Jakoby, M.; Weisshaar, B.; Saalbach, I.; Bäumlein, H. Iron assimilation and transcription factor controlled synthesis of riboflavin in plants, Planta, Volume 226 (2007) no. 1, pp. 147-158 | DOI

[121] Wang, D.; Amornsiripanitch, N.; Dong, X. A Genomic Approach to Identify Regulatory Nodes in the Transcriptional Network of Systemic Acquired Resistance in Plants, PLoS Pathogens, Volume 2 (2006) no. 11 | DOI

[122] Wang, K.; Senthil-Kumar, M.; Ryu, C.-M.; Kang, L.; Mysore, K. S. Phytosterols Play a Key Role in Plant Innate Immunity against Bacterial Pathogens by Regulating Nutrient Efflux into the Apoplast      , Plant Physiology, Volume 158 (2012) no. 4, pp. 1789-1802 | DOI

[123] Wang, W.; Tang, W.; Ma, T.; Niu, D.; Jin, J. B.; Wang, H.; Lin, R. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis, Journal of Integrative Plant Biology, Volume 58 (2015) no. 1, pp. 91-103 | DOI

[124] Wang, H.; Lin, J.; Chang, Y.; Jiang, C.-Z. Comparative Transcriptomic Analysis Reveals That Ethylene/H2O2-Mediated Hypersensitive Response and Programmed Cell Death Determine the Compatible Interaction of Sand Pear and Alternaria alternata, Frontiers in Plant Science, Volume 8 (2017) | DOI

[125] Wang, N.; Xu, H.; Jiang, S.; Zhang, Z.; Lu, N.; Qiu, H.; Qu, C.; Wang, Y.; Wu, S.; Chen, X. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (iMalus sieversii/ifi. niedzwetzkyana/i), The Plant Journal, Volume 90 (2017) no. 2, pp. 276-292 | DOI

[126] Wang, X.; Wu, J.; Guan, M.; Zhao, C.; Geng, P.; Zhao, Q. scp iArabidopsis/i /scp MYB4 plays dual roles in flavonoid biosynthesis, The Plant Journal, Volume 101 (2019) no. 3, pp. 637-652 | DOI

[127] Wasternack, C.; Feussner, I. The Oxylipin Pathways: Biochemistry and Function, Annual Review of Plant Biology, Volume 69 (2018) no. 1, pp. 363-386 | DOI

[128] Wu, J.; Wang, Z.; Shi, Z.; Zhang, S.; Ming, R.; Zhu, S.; Khan, M. A.; Tao, S.; Korban, S. S.; Wang, H.; Chen, N. J.; Nishio, T.; Xu, X.; Cong, L.; Qi, K.; Huang, X.; Wang, Y.; Zhao, X.; Wu, J.; Deng, C.; Gou, C.; Zhou, W.; Yin, H.; Qin, G.; Sha, Y.; Tao, Y.; Chen, H.; Yang, Y.; Song, Y.; Zhan, D.; Wang, J.; Li, L.; Dai, M.; Gu, C.; Wang, Y.; Shi, D.; Wang, X.; Zhang, H.; Zeng, L.; Zheng, D.; Wang, C.; Chen, M.; Wang, G.; Xie, L.; Sovero, V.; Sha, S.; Huang, W.; Zhang, S.; Zhang, M.; Sun, J.; Xu, L.; Li, Y.; Liu, X.; Li, Q.; Shen, J.; Wang, J.; Paull, R. E.; Bennetzen, J. L.; Wang, J.; Zhang, S. The genome of the pear (iPyrus bretschneideri/i Rehd.), Genome Research, Volume 23 (2012) no. 2, pp. 396-408 | DOI

[129] Xia, Y.; Yu, K.; Gao, Q.-m.; Wilson, E. V.; Navarre, D.; Kachroo, P.; Kachroo, A. Acyl CoA Binding Proteins are Required for Cuticle Formation and Plant Responses to Microbes, Frontiers in Plant Science, Volume 3 (2012) | DOI

[130] Xu, M.; Yang, Q.; Serwah Boateng, N. A.; Ahima, J.; Dou, Y.; Zhang, H. Ultrastructure observation and transcriptome analysis of Penicillium expansum invasion in postharvest pears, Postharvest Biology and Technology, Volume 165 (2020) | DOI

[131] Yamauchi, Y.; Hasegawa, A.; Mizutani, M.; Sugimoto, Y. Chloroplastic NADPH-dependent alkenal/one oxidoreductase contributes to the detoxification of reactive carbonyls produced under oxidative stress, FEBS Letters, Volume 586 (2012) no. 8, pp. 1208-1213 | DOI

[132] Yan, Y.; Zheng, X.; Apaliya, M. T.; Yang, H.; Zhang, H. Transcriptome characterization and expression profile of defense-related genes in pear induced by Meyerozyma guilliermondii, Postharvest Biology and Technology, Volume 141 (2018), pp. 63-70 | DOI

[133] Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors, Molecules, Volume 23 (2018) no. 4 | DOI

[134] Yeats, T. H.; Huang, W.; Chatterjee, S.; Viart, H. M.-F.; Clausen, M. H.; Stark, R. E.; Rose, J. K. Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants, The Plant Journal, Volume 77 (2014) no. 5, pp. 667-675 | DOI

[135] Yu, Y.; Yu, Y.; Cui, N.; Ma, L.; Tao, R.; Ma, Z.; Meng, X.; Fan, H. Lignin biosynthesis regulated by CsCSE1 is required for Cucumis sativus defence to Podosphaera xanthii, Plant Physiology and Biochemistry, Volume 186 (2022), pp. 88-98 | DOI

[136] Zhai, L.; Sun, C.; Feng, Y.; Li, D.; Chai, X.; Wang, L.; Sun, Q.; Zhang, G.; Li, Y.; Wu, T.; Zhang, X.; Xu, X.; Wang, Y.; Han, Z. iAtscpROP/scp6/iis involved in reactive oxygen species signaling in response to iron‐deficiency stress iniArabidopsis thaliana/i, FEBS Letters, Volume 592 (2018) no. 20, pp. 3446-3459 | DOI

[137] Zhai, R.; Zhao, Y.; Wu, M.; Yang, J.; Li, X.; Liu, H.; Wu, T.; Liang, F.; Yang, C.; Wang, Z.; Ma, F.; Xu, L. The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit, BMC Plant Biology, Volume 19 (2019) no. 1 | DOI

[138] Zhang, S.-B.; Zhang, W.-J.; Zhai, H.-C.; Lv, Y.-Y.; Cai, J.-P.; Jia, F.; Wang, J.-S.; Hu, Y.-S. Expression of a wheat β-1,3-glucanase in Pichia pastoris and its inhibitory effect on fungi commonly associated with wheat kernel, Protein Expression and Purification, Volume 154 (2019), pp. 134-139 | DOI

[139] Zhang, Q.; Zhao, L.; Li, B.; Gu, X.; Zhang, X.; Boateng, N. S.; Zhang, H. Molecular dissection of defense response of pears induced by the biocontrol yeast, Wickerhamomyces anomalus using transcriptomics and proteomics approaches, Biological Control, Volume 148 (2020) | DOI

[140] Zhao, Q.; Nakashima, J.; Chen, F.; Yin, Y.; Fu, C.; Yun, J.; Shao, H.; Wang, X.; Wang, Z.-Y.; Dixon, R. A. iLACCASE/i Is Necessary and Nonredundant with iPEROXIDASE/i for Lignin Polymerization during Vascular Development in iArabidopsis/i, The Plant Cell, Volume 25 (2013) no. 10, pp. 3976-3987 | DOI

[141] Zhao, C.; Nie, H.; Shen, Q.; Zhang, S.; Lukowitz, W.; Tang, D. EDR1 Physically Interacts with MKK4/MKK5 and Negatively Regulates a MAP Kinase Cascade to Modulate Plant Innate Immunity, PLoS Genetics, Volume 10 (2014) no. 5 | DOI

[142] Zou, J.-J.; Li, X.-D.; Ratnasekera, D.; Wang, C.; Liu, W.-X.; Song, L.-F.; Zhang, W.-Z.; Wu, W.-H. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and Hsub2/subOsub2/sub Homeostasis in Stomatal Guard Cells under Drought Stress, The Plant Cell, Volume 27 (2015) no. 5, pp. 1445-1460 | DOI

Cited by Sources: