Section: Microbiology
Topic: Microbiology, Biology of interactions, Plant biology

Comparative genomics and transcriptomic response to root exudates of six rice root-associated Burkholderia sensu lato species

10.24072/pcjournal.252 - Peer Community Journal, Volume 3 (2023), article no. e25.

Get full text PDF Peer reviewed and recommended by PCI

Beyond being a reliable nutrient provider, some bacteria will perceive the plant as a potential host and undertake root colonization leading to mutualistic or parasitic interactions. Bacteria of the Burkholderia and Paraburkholderia genera are frequently found in the rhizosphere of rice. While the latter are often described as plant growth promoting species, Burkholderia are often studied for their human opportunistic traits. Here, we used root exudate stimulation on three Burkholderia and three Paraburkholderia strains isolated from rice roots to characterize their preliminary adaptation to the rice host at the transcriptomic level. Instead of the awaited genus-dependent adaptation, we observed a strongly species-specific response for all tested strains. While all bacteria originate from the rice environment, there are great disparities in their levels of adaptation following the sensing of root exudates. We further report the shared major functions that were differentially regulated in this early step of bacterial adaptation to plant colonization, including amino acids and putrescine metabolism, the Entner-Doudoroff (ED) pathway as well as cyclic diguanylate monophosphate (c-di-GMP) cycling.

Published online:
DOI: 10.24072/pcjournal.252
Type: Research article
Keywords: RNAseq, root exudates, PGPR, rhizobacteria, symbiosis, Oryza sativa
Keywords: RNAseq, root exudates, PGPR, rhizobacteria, symbiosis, Oryza sativa
Wallner, Adrian 1; Klonowska, Agnieszka 1; Guigard, Ludivine 1; King, Eoghan 1; Rimbault, Isabelle 1; Ngonkeu, Eddy 2; Nguyen, Phuong 3; Béna, Gilles 1; Moulin, Lionel 1

1 PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
2 Institute of Agronomic Research for Development (IRAD), PO Box 2123, Yaoundé, Cameroon
3 University of Science and Technology of Hanoi (USTH); 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Wallner, Adrian and Klonowska, Agnieszka and Guigard, Ludivine and King, Eoghan and Rimbault, Isabelle and Ngonkeu, Eddy and Nguyen, Phuong and B\'ena, Gilles and Moulin, Lionel},
     title = {Comparative genomics and transcriptomic response to root exudates of six rice root-associated {\protect\emph{Burkholderia} sensu lato} species},
     journal = {Peer Community Journal},
     eid = {e25},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.252},
     url = {}
AU  - Wallner, Adrian
AU  - Klonowska, Agnieszka
AU  - Guigard, Ludivine
AU  - King, Eoghan
AU  - Rimbault, Isabelle
AU  - Ngonkeu, Eddy
AU  - Nguyen, Phuong
AU  - Béna, Gilles
AU  - Moulin, Lionel
TI  - Comparative genomics and transcriptomic response to root exudates of six rice root-associated Burkholderia sensu lato species
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.252
ID  - 10_24072_pcjournal_252
ER  - 
%0 Journal Article
%A Wallner, Adrian
%A Klonowska, Agnieszka
%A Guigard, Ludivine
%A King, Eoghan
%A Rimbault, Isabelle
%A Ngonkeu, Eddy
%A Nguyen, Phuong
%A Béna, Gilles
%A Moulin, Lionel
%T Comparative genomics and transcriptomic response to root exudates of six rice root-associated Burkholderia sensu lato species
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.252
%F 10_24072_pcjournal_252
Wallner, Adrian; Klonowska, Agnieszka; Guigard, Ludivine; King, Eoghan; Rimbault, Isabelle; Ngonkeu, Eddy; Nguyen, Phuong; Béna, Gilles; Moulin, Lionel. Comparative genomics and transcriptomic response to root exudates of six rice root-associated Burkholderia sensu lato species. Peer Community Journal, Volume 3 (2023), article  no. e25. doi : 10.24072/pcjournal.252.

Peer reviewed and recommended by PCI : 10.24072/pci.microbiol.100002

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Andrew, S. FastQC: A Quality Control Tool for High Throughput Sequence Data , 2010 (

[2] Araújo, W. L.; Creason, A. L.; Mano, E. T.; Camargo-Neves, A. A.; Minami, S. N.; Chang, J. H.; Loper, J. E. Genome Sequencing and Transposon Mutagenesis of Burkholderia seminalis TC3.4.2R3 Identify Genes Contributing to Suppression of Orchid Necrosis Caused by B. gladioli, Molecular Plant-Microbe Interactions®, Volume 29 (2016) no. 6, pp. 435-446 | DOI

[3] Arriel-Elias, M. T.; de Carvalho Barros Côrtes, M. V.; de Sousa, T. P.; Chaibub, A. A.; de Filippi, M. C. C. Induction of resistance in rice plants using bioproducts produced from Burkholderia pyrrocinia BRM 32113, Environmental Science and Pollution Research, Volume 26 (2019) no. 19, pp. 19705-19718 | DOI

[4] Badri, D. V.; Vivanco, J. Regulation and function of root exudates, Plant, Cell & Environment, Volume 32 (2009) no. 6, pp. 666-681 | DOI

[5] Baldani, V.; Oliveira, E.; Balota, E.; Baldani, J.; Kirchhof, G.; Dobereiner, J. Burkholderia brasilensis sp. nov., uma nova espécie de bactéria diazotrófica endofítica, An Acad Bras Cienc, Volume 69 (1997)

[6] Barnard, R. Burkholderia strains go it alone, Peer Community In Microbiology (2023) | DOI

[7] Batista, B. D.; Taniguti, L. M.; Monteiro-Vitorello, C. B.; Azevedo, J. L.; Quecine, M. C. Draft Genome Sequence of Burkholderia ambifaria RZ2MS16, a Plant Growth-Promoting Rhizobacterium Isolated from Guarana, a Tropical Plant, Genome Announcements, Volume 4 (2016) no. 2 | DOI

[8] Chavarría, M.; Nikel, P. I.; Pérez-Pantoja, D.; de Lorenzo, V. The Entner-Doudoroff pathway empowersPseudomonas putida KT2440 with a high tolerance to oxidative stress, Environmental Microbiology, Volume 15 (2013) no. 6, pp. 1772-1785 | DOI

[9] Chávez-Ramírez, B.; Kerber-Díaz, J. C.; Acoltzi-Conde, M. C.; Ibarra, J. A.; Vásquez-Murrieta, M.-S.; Estrada-de los Santos, P. Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: A proposal for biocontrol of phytopathogenic fungi, Microbiological Research, Volume 230 (2020) | DOI

[10] Cleveland, W. S.; Grosse, E.; Shyu, W. M. Local Regression Models, Statistical Models in S, Routledge, 2017, pp. 309-376 | DOI

[11] Coutinho, B. G.; Licastro, D.; Mendonça-Previato, L.; Cámara, M.; Venturi, V. Plant-Influenced Gene Expression in the Rice Endophyte Burkholderia kururiensis M130, Molecular Plant-Microbe Interactions®, Volume 28 (2015) no. 1, pp. 10-21 | DOI

[12] Cumming, R. C.; Andon, N. L.; Haynes, P. A.; Park, M.; Fischer, W. H.; Schubert, D. Protein Disulfide Bond Formation in the Cytoplasm during Oxidative Stress, Journal of Biological Chemistry, Volume 279 (2004) no. 21, pp. 21749-21758 | DOI

[13] Dall'Agnol, R. F.; Bournaud, C.; de Faria, S. M.; Béna, G.; Moulin, L.; Hungria, M. Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica), FEMS Microbiology Ecology, Volume 93 (2017) no. 4 | DOI

[14] Engledow, A. S.; Medrano, E. G.; Mahenthiralingam, E.; LiPuma, J. J.; Gonzalez, C. F. Involvement of a Plasmid-Encoded Type IV Secretion System in the Plant Tissue Watersoaking Phenotype of Burkholderia cenocepacia, Journal of Bacteriology, Volume 186 (2004) no. 18, pp. 6015-6024 | DOI

[15] Esmaeel, Q.; Issa, A.; Sanchez, L.; Clément, C.; Jacquard, C.; Barka, E. A. Draft Genome Sequence of Burkholderia reimsis BE51, a Plant-Associated Bacterium Isolated from Agricultural Rhizosphere, Microbiology Resource Announcements, Volume 7 (2018) no. 13 | DOI

[16] Estrada-de los Santos, P.; Palmer, M.; Chávez-Ramírez, B.; Beukes, C.; Steenkamp, E.; Briscoe, L.; Khan, N.; Maluk, M.; Lafos, M.; Humm, E.; Arrabit, M.; Crook, M.; Gross, E.; Simon, M.; dos Reis Junior, F.; Whitman, W.; Shapiro, N.; Poole, P.; Hirsch, A.; Venter, S.; James, E. Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae, Genes, Volume 9 (2018) no. 8 | DOI

[17] Fan, B.; Carvalhais, L. C.; Becker, A.; Fedoseyenko, D.; von Wirén, N.; Borriss, R. Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates, BMC Microbiology, Volume 12 (2012) no. 1 | DOI

[18] Galyov, E. E.; Brett, P. J.; DeShazer, D. Molecular Insights into Burkholderia pseudomallei and Burkholderia mallei Pathogenesis, Annual Review of Microbiology, Volume 64 (2010) no. 1, pp. 495-517 | DOI

[19] Gillis, M.; Van Van, T.; Bardin, R.; Goor, M.; Hebbar, P.; Willems, A.; Segers, P.; Kersters, K.; Heulin, T.; Fernandez, M. P. Polyphasic Taxonomy in the Genus Burkholderia Leading to an Emended Description of the Genus and Proposition of Burkholderia vietnamiensis sp. nov. for N2-Fixing Isolates from Rice in Vietnam, International Journal of Systematic Bacteriology, Volume 45 (1995) no. 2, pp. 274-289 | DOI

[20] Govindarajan, M.; Balandreau, J.; Kwon, S.-W.; Weon, H.-Y.; Lakshminarasimhan, C. Effects of the Inoculation of Burkholderia vietnamensis and Related Endophytic Diazotrophic Bacteria on Grain Yield of Rice, Microbial Ecology, Volume 55 (2007) no. 1, pp. 21-37 | DOI

[21] Graves, S.; Piepho, H.; Selzer, M. Package ‘multcompView’. Vis. Paired Comp., 2015 (

[22] Hameed, A.; Shahina, M.; Lai, W.-A.; Stothard, P.; Young, L.-S.; Lin, S.-Y.; Young, C.-C. Draft genome sequence reveals co-occurrence of multiple antimicrobial resistance and plant probiotic traits in rice root endophytic strain Burkholderia sp. LS-044 affiliated to Burkholderia cepacia complex, Journal of Global Antimicrobial Resistance, Volume 20 (2020), pp. 28-30 | DOI

[23] Hardoim, P. R. Heading to the Origins – Rice Microbiome as Functional Extension of the Host, Rice Research: Open Access, Volume 03 (2015) no. 02 | DOI

[24] Hassan, S.; Mathesius, U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions, Journal of Experimental Botany, Volume 63 (2012) no. 9, pp. 3429-3444 | DOI

[25] Ikeda, S.; Sasaki, K.; Okubo, T.; Yamashita, A.; Terasawa, K.; Bao, Z.; Liu, D.; Watanabe, T.; Murase, J.; Asakawa, S.; Eda, S.; Mitsui, H.; Sato, T.; Minamisawa, K. Low Nitrogen Fertilization Adapts Rice Root Microbiome to Low Nutrient Environment by Changing Biogeochemical Functions, Microbes and Environments, Volume 29 (2014) no. 1, pp. 50-59 | DOI

[26] Jacobs, J. L.; Fasi, A. C.; Ramette, A.; Smith, J. J.; Hammerschmidt, R.; Sundin, G. W. Identification and Onion Pathogenicity of Burkholderia cepacia Complex Isolates from the Onion Rhizosphere and Onion Field Soil, Applied and Environmental Microbiology, Volume 74 (2008) no. 10, pp. 3121-3129 | DOI

[27] Jung, H.-I.; Kim, Y.-J.; Lee, Y.-J.; Lee, H.-S.; Lee, J.-K.; Kim, S.-K. Mutation of the cyclic di-GMP phosphodiesterase gene in Burkholderia lata SK875 attenuates virulence and enhances biofilm formation, Journal of Microbiology, Volume 55 (2017) no. 10, pp. 800-808 | DOI

[28] Kang, S.-M.; Waqas, M.; Shahzad, R.; You, Y.-H.; Asaf, S.; Khan, M. A.; Lee, K.-E.; Joo, G.-J.; Kim, S.-J.; Lee, I.-J. Isolation and characterization of a novel silicate-solubilizing bacterial strainBurkholderia eburnea CS4-2 that promotes growth of japonica rice (Oryza sativaL. cv. Dongjin), Soil Science and Plant Nutrition (2017), pp. 1-9 | DOI

[29] Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.6. 0, 2020 (

[30] Kim, N.; Mannaa, M.; Kim, J.; Ra, J.-E.; Kim, S.-M.; Lee, C.; Lee, H.-H.; Seo, Y.-S. The In Vitro and In Planta Interspecies Interactions Among Rice-Pathogenic Burkholderia Species, Plant Disease, Volume 105 (2021) no. 1, pp. 134-143 | DOI

[31] King, E.; Wallner, A.; Rimbault, I.; Barrachina, C.; Klonowska, A.; Moulin, L.; Czernic, P. Monitoring of Rice Transcriptional Responses to Contrasted Colonizing Patterns of Phytobeneficial Burkholderia s.l. Reveals a Temporal Shift in JA Systemic Response, Frontiers in Plant Science, Volume 10 (2019) | DOI

[32] Klonowska, A.; Melkonian, R.; Miché, L.; Tisseyre, P.; Moulin, L. Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history, BMC Genomics, Volume 19 (2018) no. 1 | DOI

[33] Kuiper, I.; Bloemberg, G. V.; Noreen, S.; Thomas-Oates, J. E.; Lugtenberg, B. J. J. Increased Uptake of Putrescine in the Rhizosphere Inhibits Competitive Root Colonization by Pseudomonas fluorescens Strain WCS365, Molecular Plant-Microbe Interactions®, Volume 14 (2001) no. 9, pp. 1096-1104 | DOI

[34] Kwak, G.-Y.; Choi, O.; Goo, E.; Kang, Y.; Kim, J.; Hwang, I. Quorum Sensing-Independent Cellulase-Sensitive Pellicle Formation Is Critical for Colonization of Burkholderia glumae in Rice Plants, Frontiers in Microbiology, Volume 10 (2020) | DOI

[35] Liu, Z.; Beskrovnaya, P.; Melnyk, R. A.; Hossain, S. S.; Khorasani, S.; O’Sullivan, L. R.; Wiesmann, C. L.; Bush, J.; Richard, J. D.; Haney, C. H. A Genome-Wide Screen Identifies Genes in Rhizosphere-Associated Pseudomonas Required to Evade Plant Defenses, mBio, Volume 9 (2018) no. 6 | DOI

[36] Love, M. I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, Volume 15 (2014) no. 12 | DOI

[37] Mangalea, M. R.; Plumley, B. A.; Borlee, B. R. Nitrate Sensing and Metabolism Inhibit Biofilm Formation in the Opportunistic Pathogen Burkholderia pseudomallei by Reducing the Intracellular Concentration of c-di-GMP, Frontiers in Microbiology, Volume 8 (2017) | DOI

[38] Mark, G. L.; Dow, J. M.; Kiely, P. D.; Higgins, H.; Haynes, J.; Baysse, C.; Abbas, A.; Foley, T.; Franks, A.; Morrissey, J.; O'Gara, F. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions, Proceedings of the National Academy of Sciences, Volume 102 (2005) no. 48, pp. 17454-17459 | DOI

[39] Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, Volume 17 (2011) no. 1 | DOI

[40] Mattos, K. A.; Pádua, V. L.; Romeiro, A.; Hallack, L. F.; Neves, B. C.; Ulisses, T. M.; Barros, C. F.; Todeschini, A. R.; Previato, J. O.; Mendonça-Previato, L. Endophytic colonization of rice (Oryza sativa L.) by the diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth, Anais da Academia Brasileira de Ciências, Volume 80 (2008) no. 3, pp. 477-493 | DOI

[41] Mitter, B.; Petric, A.; Shin, M. W.; Chain, P. S. G.; Hauberg-Lotte, L.; Reinhold-Hurek, B.; Nowak, J.; Sessitsch, A. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants, Frontiers in Plant Science, Volume 4 (2013) | DOI

[42] Morales-Ruíz, L.-M.; Rodríguez-Cisneros, M.; Kerber-Díaz, J.-C.; Rojas-Rojas, F.-U.; Ibarra, J. A.; Estrada-de los Santos, P. Burkholderia orbicola sp. nov., a novel species within the Burkholderia cepacia complex, Archives of Microbiology, Volume 204 (2022) no. 3 | DOI

[43] Moulin, L. Script Article Wallner et al (Version 1). Zenodo, 2022 | DOI

[44] Mullins, A. J.; Murray, J. A. H.; Bull, M. J.; Jenner, M.; Jones, C.; Webster, G.; Green, A. E.; Neill, D. R.; Connor, T. R.; Parkhill, J.; Challis, G. L.; Mahenthiralingam, E. Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria, Nature Microbiology, Volume 4 (2019) no. 6, pp. 996-1005 | DOI

[45] Navarro, M. O. P.; Piva, A. C. M.; Simionato, A. S.; Spago, F. R.; Modolon, F.; Emiliano, J.; Azul, A. M.; Chryssafidis, A. L.; Andrade, G. Bioactive Compounds Produced by Biocontrol Agents Driving Plant Health, Microbiome in Plant Health and Disease, Springer Singapore, Singapore, 2019, pp. 337-374 | DOI

[46] Ondov, B. D.; Treangen, T. J.; Melsted, P.; Mallonee, A. B.; Bergman, N. H.; Koren, S.; Phillippy, A. M. Mash: fast genome and metagenome distance estimation using MinHash, Genome Biology, Volume 17 (2016) no. 1 | DOI

[47] Perin, L.; Martínez-Aguilar, L.; Castro-González, R.; Estrada-de los Santos, P.; Cabellos-Avelar, T.; Guedes, H. V.; Reis, V. M.; Caballero-Mellado, J. Diazotrophic Burkholderia Species Associated with Field-Grown Maize and Sugarcane, Applied and Environmental Microbiology, Volume 72 (2006) no. 5, pp. 3103-3110 | DOI

[48] Plumley, B. A.; Martin, K. H.; Borlee, G. I.; Marlenee, N. L.; Burtnick, M. N.; Brett, P. J.; AuCoin, D. P.; Bowen, R. A.; Schweizer, H. P.; Borlee, B. R. Thermoregulation of Biofilm Formation in Burkholderia pseudomallei Is Disrupted by Mutation of a Putative Diguanylate Cyclase, Journal of Bacteriology, Volume 199 (2017) no. 5 | DOI

[49] Richter, A. M.; Fazli, M.; Schmid, N.; Shilling, R.; Suppiger, A.; Givskov, M.; Eberl, L.; Tolker-Nielsen, T. Key Players and Individualists of Cyclic-di-GMP Signaling in Burkholderia cenocepacia, Frontiers in Microbiology, Volume 9 (2019) | DOI

[50] Römling, U.; Galperin, M. Y.; Gomelsky, M. Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger, Microbiology and Molecular Biology Reviews, Volume 77 (2013) no. 1, pp. 1-52 | DOI

[51] Schmid, N.; Suppiger, A.; Steiner, E.; Pessi, G.; Kaever, V.; Fazli, M.; Tolker-Nielsen, T.; Jenal, U.; Eberl, L. High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111, Microbiology, Volume 163 (2017) no. 5, pp. 754-764 | DOI

[52] Shehata, H. R.; Raizada, M. N. A Burkholderia endophyte of the ancient maize landrace Chapalote utilizes c-di-GMP-dependent and independent signaling to suppress diverse plant fungal pathogen targets, FEMS Microbiology Letters, Volume 364 (2017) no. 14 | DOI

[53] Shi, Z.; Wang, Q.; Li, Y.; Liang, Z.; Xu, L.; Zhou, J.; Cui, Z.; Zhang, L.-H. Putrescine Is an Intraspecies and Interkingdom Cell-Cell Communication Signal Modulating the Virulence of Dickeya zeae, Frontiers in Microbiology, Volume 10 (2019) | DOI

[54] Shidore, T.; Dinse, T.; Öhrlein, J.; Becker, A.; Reinhold-Hurek, B. Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyteAzoarcussp. strain BH72, Environmental Microbiology, Volume 14 (2012) no. 10, pp. 2775-2787 | DOI

[55] Simão, F. A.; Waterhouse, R. M.; Ioannidis, P.; Kriventseva, E. V.; Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, Volume 31 (2015) no. 19, pp. 3210-3212 | DOI

[56] Simonsen, M.; Mailund, T.; Pedersen, C. N. S. Rapid Neighbour-Joining, Lecture Notes in Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 113-122 | DOI

[57] Song, D.; Chen, G.; Liu, S.; Khaskheli, M. A.; Wu, L. Complete genome sequence of Burkholderia sp. JP2-270, a rhizosphere isolate of rice with antifungal activity against Rhizoctonia solani, Microbial Pathogenesis, Volume 127 (2019), pp. 1-6 | DOI

[58] Sousa, S. A.; Ramos, C. G.; Leitão, J. H. Burkholderia cepaciaComplex: Emerging Multihost Pathogens Equipped with a Wide Range of Virulence Factors and Determinants, International Journal of Microbiology, Volume 2011 (2011), pp. 1-9 | DOI

[59] de Souza, R.; Meyer, J.; Schoenfeld, R.; da Costa, P. B.; Passaglia, L. M. P. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils, Annals of Microbiology, Volume 65 (2014) no. 2, pp. 951-964 | DOI

[60] Suzuki, K.; Okazaki, K.; Tawaraya, K.; Osaki, M.; Shinano, T. Gas chromatography–mass spectrometry associated global analysis of rice root exudates under aseptical conditions, Soil Science and Plant Nutrition, Volume 55 (2009) no. 4, pp. 505-513 | DOI

[61] Tiburcio, A. F.; Altabella, T.; Bitrián, M.; Alcázar, R. The roles of polyamines during the lifespan of plants: from development to stress, Planta, Volume 240 (2014) no. 1, pp. 1-18 | DOI

[62] Trân Van, V.; Berge, O.; Ngô Kê, S.; Balandreau, J.; Heulin, T. Plant and Soil, 218/2 (2000) no. 1/2, pp. 273-284 | DOI

[63] Vallenet, D.; Calteau, A.; Dubois, M.; Amours, P.; Bazin, A.; Beuvin, M.; Burlot, L.; Bussell, X.; Fouteau, S.; Gautreau, G.; Lajus, A.; Langlois, J.; Planel, R.; Roche, D.; Rollin, J.; Rouy, Z.; Sabatet, V.; Médigue, C. MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis, Nucleic Acids Research (2019) | DOI

[64] Vidal-Quist, J. C.; O’Sullivan, L. A.; Desert, A.; Fivian-Hughes, A. S.; Millet, C.; Jones, T. H.; Weightman, A. J.; Rogers, H. J.; Berry, C.; Mahenthiralingam, E. Arabidopsis thaliana and Pisum sativum models demonstrate that root colonization is an intrinsic trait of Burkholderia cepacia complex bacteria, Microbiology, Volume 160 (2014) no. 2, pp. 373-384 | DOI

[65] Vincent, J. A manual for the practical study of the root-nodule bacteria, Blackwell Scientific Publishers, Oxford, 1970, 164 pages

[66] Wallner, A.; Busset, N.; Lachat, J.; Guigard, L.; King, E.; Rimbault, I.; Mergaert, P.; Béna, G.; Moulin, L. Differential Genetic Strategies of Burkholderia vietnamiensis and Paraburkholderia kururiensis for Root Colonization of Oryza sativa subsp. japonica and O. sativa subsp. indica , as Revealed by Transposon Mutagenesis Sequencing, Applied and Environmental Microbiology, Volume 88 (2022) no. 14 | DOI

[67] Wallner, A.; Klonowska, A.; Guigard, L.; King, E.; Rimbault, I.; Ngonkeu, E.; Nguyen, P.; Béna, G.; Moulin, L. Comparative genomics and transcriptomic response to root exudates of six rice root-associated Burkholderia sensu lato species , BioRxiv, 2022.10.04.510755, version 2 peer-reviewed and recommended by PCI Microbiol. , Volume 2022.10.04.510755 (2022) | DOI

[68] Wallner, A.; King, E.; Ngonkeu, E. L. M.; Moulin, L.; Béna, G. Genomic analyses of Burkholderia cenocepacia reveal multiple species with differential host-adaptation to plants and humans, BMC Genomics, Volume 20 (2019) no. 1 | DOI

[69] Wang, M.; Tachibana, S.; Murai, Y.; Li, L.; Lau, S. Y. L.; Cao, M.; Zhu, G.; Hashimoto, M.; Hashidoko, Y. Indole-3-Acetic Acid Produced by Burkholderia heleia Acts as a Phenylacetic Acid Antagonist to Disrupt Tropolone Biosynthesis in Burkholderia plantarii, Scientific Reports, Volume 6 (2016) no. 1 | DOI

[70] Wang, X.; Liu, A.; Guerrero, A.; Liu, J.; Yu, X.; Deng, P.; Ma, L.; Baird, S.; Smith, L.; Li, X.; Lu, S. Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2, Journal of Applied Microbiology, Volume 120 (2016) no. 3, pp. 607-618 | DOI

[71] Wickham, H. Data Analysis, ggplot2: Elegant Graphics for Data Analysis (Use R!), Springer International Publishing, 2016, pp. 189-201 | DOI

[72] Yi, Y.; de Jong, A.; Frenzel, E.; Kuipers, O. P. Comparative Transcriptomics of Bacillus mycoides Strains in Response to Potato-Root Exudates Reveals Different Genetic Adaptation of Endophytic and Soil Isolates, Frontiers in Microbiology, Volume 8 (2017) | DOI

[73] Yu, Y.; Zhang, J.; Petropoulos, E.; Baluja, M. Q.; Zhu, C.; Zhu, J.; Lin, X.; Feng, Y. Divergent Responses of the Diazotrophic Microbiome to Elevated CO2 in Two Rice Cultivars, Frontiers in Microbiology, Volume 9 (2018) | DOI

[74] Zhang, N.; Yang, D.; Wang, D.; Miao, Y.; Shao, J.; Zhou, X.; Xu, Z.; Li, Q.; Feng, H.; Li, S.; Shen, Q.; Zhang, R. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates, BMC Genomics, Volume 16 (2015) no. 1 | DOI

Cited by Sources: