Section: Mathematical & Computational Biology
Topic: Biophysics and computational biology, Genetics/Genomics

Marker and source-marker reprogramming of Most Permissive Boolean networks and ensembles with BoNesis

Corresponding author(s): Paulevé, Loïc (loic.pauleve@labri.fr)

10.24072/pcjournal.255 - Peer Community Journal, Volume 3 (2023), article no. e30.

Get full text PDF Peer reviewed and recommended by PCI
article image

Boolean networks (BNs) are discrete dynamical systems with applications to the modeling of cellular behaviors. In this paper, we demonstrate how the software BoNesis can be employed to exhaustively identify combinations of perturbations which enforce properties on their fixed points and attractors. We consider marker properties, which specify that some components are fixed to a specific value. We study 4 variants of the marker reprogramming problem: the reprogramming of fixed points, of minimal trap spaces, and of fixed points and minimal trap spaces reachable from a given initial configuration with the most permissive update mode. The perturbations consist of fixing a set of components to a fixed value. They can destroy and create new attractors. In each case, we give an upper bound on their theoretical computational complexity, and give an implementation of the resolution using the BoNesis Python framework. Finally, we lift the reprogramming problems to ensembles of BNs, as supported by BoNesis, bringing insight on possible and universal reprogramming strategies. This paper can be executed and modified interactively.

Published online:
DOI: 10.24072/pcjournal.255
Type: Research article
Keywords: Discrete dynamical systems, Control, Minimal trap spaces, Attractors, Reachability, Gene Regulatory Networks
Keywords: Systems and Control (eess.SY), Artificial Intelligence (cs.AI), Molecular Networks (q-bio.MN), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Biological sciences, FOS: Biological sciences

Paulevé, Loïc 1

1 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_255,
     author = {Paulev\'e, Lo{\"\i}c},
     title = {Marker and source-marker reprogramming of {Most} {Permissive} {Boolean} networks and ensembles with {BoNesis}},
     journal = {Peer Community Journal},
     eid = {e30},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.255},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.255/}
}
TY  - JOUR
AU  - Paulevé, Loïc
TI  - Marker and source-marker reprogramming of Most Permissive Boolean networks and ensembles with BoNesis
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.255/
DO  - 10.24072/pcjournal.255
ID  - 10_24072_pcjournal_255
ER  - 
%0 Journal Article
%A Paulevé, Loïc
%T Marker and source-marker reprogramming of Most Permissive Boolean networks and ensembles with BoNesis
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.255/
%R 10.24072/pcjournal.255
%F 10_24072_pcjournal_255
Paulevé, Loïc. Marker and source-marker reprogramming of Most Permissive Boolean networks and ensembles with BoNesis. Peer Community Journal, Volume 3 (2023), article  no. e30. doi : 10.24072/pcjournal.255. https://peercommunityjournal.org/articles/10.24072/pcjournal.255/

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.mcb.100183

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Beneš, N.; Brim, L.; Pastva, S.; Šafránek, D. Aeon 2021: Bifurcation Decision Trees in Boolean Networks, Computational Methods in Systems Biology, Springer International Publishing, Cham, 2021, pp. 230-237 | DOI

[2] Biane, C.; Delaplace, F. Causal Reasoning on Boolean Control Networks Based on Abduction: Theory and Application to Cancer Drug Discovery, IEEE/ACM Transactions on Computational Biology and Bioinformatics, Volume 16 (2019) no. 5, pp. 1574-1585 | DOI

[3] Chevalier, S.; Froidevaux, C.; Pauleve, L.; Zinovyev, A. Synthesis of Boolean Networks from Biological Dynamical Constraints using Answer-Set Programming, 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI) (2019) | DOI

[4] Cohen, D. P. A.; Martignetti, L.; Robine, S.; Barillot, E.; Zinovyev, A.; Calzone, L. Mathematical Modelling of Molecular Pathways Enabling Tumour Cell Invasion and Migration, PLOS Computational Biology, Volume 11 (2015) no. 11 | DOI

[5] Fontanals, L. C.; Tonello, E.; Siebert, H. Control Strategy Identification via Trap Spaces in Boolean Networks, Computational Methods in Systems Biology, Springer International Publishing, 2020, pp. 159-175 | DOI

[6] Mandon, H.; Haar, S.; Paulevé, L. Temporal Reprogramming of Boolean Networks, Computational Methods in Systems Biology, Springer International Publishing, 2017, pp. 179-195 | DOI

[7] Mandon, H.; Su, C.; Haar, S.; Pang, J.; Paulevé, L. Sequential Reprogramming of Boolean Networks Made Practical, Computational Methods in Systems Biology, Springer International Publishing, 2019, pp. 3-19 | DOI

[8] Montagud, A.; Béal, J.; Tobalina, L.; Traynard, P.; Subramanian, V.; Szalai, B.; Alföldi, R.; Puskás, L.; Valencia, A.; Barillot, E.; Saez-Rodriguez, J.; Calzone, L. Patient-specific Boolean models of signalling networks guide personalised treatments, eLife, Volume 11 (2022) | DOI

[9] Moon, K.; Lee, K.; Chopra, S.; Kwon, S. Bilevel integer programming on a Boolean network for discovering critical genetic alterations in cancer development and therapy, European Journal of Operational Research, Volume 300 (2022) no. 2, pp. 743-754 | DOI

[10] Moon, K.; Lee, K.; Paulevé, L. Computational Complexity of Minimal Trap Spaces in Boolean Networks, arXiv (2022) | DOI

[11] Naldi, A.; Hernandez, C.; Levy, N.; Stoll, G.; Monteiro, P. T.; Chaouiya, C.; Helikar, T.; Zinovyev, A.; Calzone, L.; Cohen-Boulakia, S.; Thieffry, D.; Paulevé, L. The CoLoMoTo Interactive Notebook: Accessible and Reproducible Computational Analyses for Qualitative Biological Networks, Frontiers in Physiology, Volume 9 (2018) | DOI

[12] Papadimitriou, C. H. Computational Complexity, Addison-Wesley, 1995

[13] Pardo, J.; Ivanov, S.; Delaplace, F. Sequential reprogramming of biological network fate, Theoretical Computer Science, Volume 872 (2021), pp. 97-116 | DOI

[14] Paulevé, L.; Kolčák, J.; Chatain, T.; Haar, S. Reconciling qualitative, abstract, and scalable modeling of biological networks, Nature Communications, Volume 11 (2020) no. 1 | DOI

[15] Paulevé, L.; Sené, S. Non-deterministic updates of Boolean networks and their dynamics: the impact of updates, In: Systems Biology Modelling and Analysis: Formal Bioinformatics Methods and Tools, Wiley, 2022

[16] Paulevé, L.; Sené, S. Boolean networks and their dynamics: the impact of updates, Systems Biology Modelling and Analysis: Formal Bioinformatics Methods and Tools, Wiley, 2022

[17] Rozum, J. C.; Deritei, D.; Park, K. H.; Gómez Tejeda Zañudo, J.; Albert, R. pystablemotifs: Python library for attractor identification and control in Boolean networks, Bioinformatics, Volume 38 (2021) no. 5, pp. 1465-1466 | DOI

[18] Saez‐Rodriguez, J.; Alexopoulos, L. G.; Epperlein, J.; Samaga, R.; Lauffenburger, D. A.; Klamt, S.; Sorger, P. K. Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction, Molecular Systems Biology, Volume 5 (2009) no. 1 | DOI

[19] Schwab, J. D.; Ikonomi, N.; Werle, S. D.; Weidner, F. M.; Geiger, H.; Kestler, H. A. Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells, Computational and Structural Biotechnology Journal, Volume 19 (2021), pp. 5321-5332 | DOI

[20] Su, C.; Pang, J. CABEAN: a software for the control of asynchronous Boolean networks, Bioinformatics, Volume 37 (2020) no. 6, pp. 879-881 | DOI

[21] Yang, G.; Gómez Tejeda Zañudo, J.; Albert, R. Target Control in Logical Models Using the Domain of Influence of Nodes, Frontiers in Physiology, Volume 9 (2018) | DOI

[22] Zañudo, J. G. T.; Albert, R. Cell Fate Reprogramming by Control of Intracellular Network Dynamics, PLOS Computational Biology, Volume 11 (2015) no. 4 | DOI

[23] Zañudo, J. G. T.; Mao, P.; Alcon, C.; Kowalski, K.; Johnson, G. N.; Xu, G.; Baselga, J.; Scaltriti, M.; Letai, A.; Montero, J.; Albert, R.; Wagle, N. Cell Line–Specific Network Models of ER+ Breast Cancer Identify Potential PI3Kα Inhibitor Resistance Mechanisms and Drug Combinations, Cancer Research, Volume 81 (2021) no. 17, pp. 4603-4617 | DOI

Cited by Sources:

block.super