Section: Ecology
Topic: Ecology, Environmental sciences

Symbiotic nutrient cycling enables the long-term survival of Aiptasia in the absence of heterotrophic food sources

10.24072/pcjournal.281 - Peer Community Journal, Volume 3 (2023), article no. e48.

Get full text PDF Peer reviewed and recommended by PCI
article image

Phototrophic Cnidaria are mixotrophic organisms that can complement their heterotrophic diet with nutrients assimilated by their algal endosymbionts. Metabolic models suggest that the translocation of photosynthates and their derivatives from the algae may be sufficient to cover the metabolic energy demands of the host. However, the importance of heterotrophy to the nutritional budget of these holobionts remains unclear. Here, we report on the long-term survival of the photosymbiotic anemone Aiptasia in the absence of heterotrophic food sources. Following one year of heterotrophic starvation, these anemones remained fully viable but showed an 85 % reduction in biomass compared to their regularly fed counterparts. This shrinking was accompanied by a reduction in host protein content and algal density, indicative of severe nitrogen limitation. Nonetheless, isotopic labeling experiments combined with NanoSIMS imaging revealed that the contribution of algal-derived nutrients to the host metabolism remained unaffected due to an increase in algal photosynthesis and more efficient carbon translocation. Taken together, our results suggest that, on a one- year timescale, heterotrophic feeding is not essential to fulfilling the energy requirements of the holobiont. But, while symbiotic nutrient cycling effectively retains carbon in the holobiont over long time scales, our data suggest that heterotrophic feeding is a critical source of nitrogen required for holobiont growth under oligotrophic conditions.

Published online:
DOI: 10.24072/pcjournal.281
Type: Research article

Rädecker, Nils 1; Meibom, Anders 1, 2

1 Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2 Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {R\"adecker, Nils and Meibom, Anders},
     title = {Symbiotic nutrient cycling enables the long-term survival of {Aiptasia~in} the absence of heterotrophic food sources},
     journal = {Peer Community Journal},
     eid = {e48},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.281},
     url = {}
AU  - Rädecker, Nils
AU  - Meibom, Anders
TI  - Symbiotic nutrient cycling enables the long-term survival of Aiptasia in the absence of heterotrophic food sources
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.281
ID  - 10_24072_pcjournal_281
ER  - 
%0 Journal Article
%A Rädecker, Nils
%A Meibom, Anders
%T Symbiotic nutrient cycling enables the long-term survival of Aiptasia in the absence of heterotrophic food sources
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.281
%F 10_24072_pcjournal_281
Rädecker, Nils; Meibom, Anders. Symbiotic nutrient cycling enables the long-term survival of Aiptasia in the absence of heterotrophic food sources. Peer Community Journal, Volume 3 (2023), article  no. e48. doi : 10.24072/pcjournal.281.

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.ecology.100520

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Anthony, K. R. N.; Hoogenboom, M. O.; Maynard, J. A.; Grottoli, A. G.; Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching, Functional Ecology, Volume 23 (2009) no. 3, pp. 539-550 | DOI

[2] Burriesci, M. S.; Raab, T. K.; Pringle, J. R. Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarian symbiosis, Journal of Experimental Biology, Volume 215 (2012) no. 19, pp. 3467-3477 | DOI

[3] Cardini, U. Constraining the importance of heterotrophic vs autotrophic feeding in photosymbiotic cnidarians, Peer Community in Ecology, 2023 no. 100520 | DOI

[4] Cook, C. B.; D'Elia, C. F.; Muller-Parker, G. Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida, Marine Biology, Volume 98 (1988) no. 2, pp. 253-262 | DOI

[5] Cook, C. B.; Muller-Parker, G.; D'Elia, C. F. Ammonium enhancement of dark carbon fixation and nitrogen limitation in symbiotic zooxanthellae: Effects of feeding and starvation of the sea anemone Aiptasia pallida, Limnology and Oceanography, Volume 37 (1992) no. 1, pp. 131-139 | DOI

[6] Cui, G.; Konciute, M. K.; Ling, L.; Esau, L.; Raina, J.-B.; Han, B.; Salazar, O. R.; Presnell, J. S.; Rädecker, N.; Zhong, H.; Menzies, J.; Cleves, P. A.; Liew, Y. J.; Krediet, C. J.; Sawiccy, V.; Cziesielski, M. J.; Guagliardo, P.; Bougoure, J.; Pernice, M.; Hirt, H.; Voolstra, C. R.; Weis, V. M.; Pringle, J. R.; Aranda, M. Molecular insights into the Darwin paradox of coral reefs from the sea anemone Aiptasia, Science Advances, Volume 9 (2023) no. 11 | DOI

[7] Cui, G.; Liew, Y. J.; Konciute, M. K.; Zhan, Y.; Hung, S.-H.; Thistle, J.; Gastoldi, L.; Schmidt-Roach, S.; Dekker, J.; Aranda, M. Nutritional control regulates symbiont proliferation and life history in coral-dinoflagellate symbiosis, BMC Biology, Volume 20 (2022a) no. 1 | DOI

[8] Cui, G.; Mi, J.; Moret, A.; Zhong, H.; Hung, S.-H.; Al-Babili, S.; Aranda, M. Nitrogen competition is the general mechanism underlying cnidarian-Symbiodiniaceae symbioses, bioRxiv, 2022b | DOI

[9] Cunning, R.; Muller, E. B.; Gates, R. D.; Nisbet, R. M. A dynamic bioenergetic model for coral- Symbiodinium symbioses and coral bleaching as an alternate stable state, Journal of Theoretical Biology, Volume 431 (2017), pp. 49-62 | DOI

[10] Davies, P. S. The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi, Coral Reefs, Volume 2 (1984), pp. 181-186 | DOI

[11] Davy, S.; Cook, C. The relationship between nutritional status and carbon flux in the zooxanthellate sea anemone Aiptasia pallida, Marine Biology, Volume 139 (2001) no. 5, pp. 999-1005 | DOI

[12] Dubinsky, Z.; Jokiel, P. L. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals, Pacific Science, Volume 48 (1994), pp. 313-324

[13] Falkowski, P. G.; Dubinsky, Z.; Muscatine, L.; Porter, J. W. Light and the bioenergetics of a symbiotic coral, BioScience, Volume 34 (1984) no. 11, pp. 705-709 | DOI

[14] Fox, M. D.; Williams, G. J.; Johnson, M. D.; Radice, V. Z.; Zgliczynski, B. J.; Kelly, E. L.; Rohwer, F. L.; Sandin, S. A.; Smith, J. E. Gradients in primary production predict trophic strategies of mixotrophic corals across spatial scales, Current Biology, Volume 28 (2018) no. 21 | DOI

[15] Goreau, T. F.; Goreau, N. I.; Yonge, C. M. Reef corals: Autotrophs or heterotrophs?, The Biological Bulletin, Volume 141 (1971) no. 2, pp. 247-260 | DOI

[16] Grawunder, D.; Hambleton, E. A.; Bucher, M.; Wolfowicz, I.; Bechtoldt, N.; Guse, A. Induction of gametogenesis in the cnidarian endosymbiosis model Aiptasia sp., Scientific Reports, Volume 5 (2015) no. 1 | DOI

[17] Grottoli, A. G.; Rodrigues, L. J.; Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals, Nature, Volume 440 (2006) no. 7088, pp. 1186-1189 | DOI

[18] Hambleton, E. A.; Jones, V. A. S.; Maegele, I.; Kvaskoff, D.; Sachsenheimer, T.; Guse, A. Sterol transfer by atypical cholesterol-binding NPC2 proteins in coral-algal symbiosis, eLife, Volume 8 (2019) | DOI

[19] Harrison, P. J.; Waters, R. E.; Taylor, F. J. R. A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton, Journal of Phycology, Volume 16 (1980) no. 1, pp. 28-35 | DOI

[20] Hoppe, P.; Cohen, S.; Meibom, A. NanoSIMS: Technical aspects and applications in cosmochemistry and biological geochemistry, Geostandards and Geoanalytical Research, Volume 37 (2013) no. 2, pp. 111-154 | DOI

[21] Houlbrèque, F.; Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals, Biological Reviews, Volume 84 (2009) no. 1, pp. 1-17 | DOI

[22] Hughes, A.; Grottoli, A.; Pease, T.; Matsui, Y. Acquisition and assimilation of carbon in non-bleached and bleached corals, Marine Ecology Progress Series, Volume 420 (2010), pp. 91-101 | DOI

[23] Kopp, C.; Domart-Coulon, I.; Escrig, S.; Humbel, B. M.; Hignette, M.; Meibom, A. Subcellular Investigation of Photosynthesis-Driven Carbon Assimilation in the Symbiotic Reef Coral Pocillopora damicornis, mBio, Volume 6 (2015) no. 1 | DOI

[24] Kopp, C.; Pernice, M.; Domart-Coulon, I.; Djediat, C.; Spangenberg, J. E.; Alexander, D. T. L.; Hignette, M.; Meziane, T.; Meibom, A. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen, mBio, Volume 4 (2013) no. 3 | DOI

[25] Krueger, T.; Horwitz, N.; Bodin, J.; Giovani, M.-E.; Escrig, S.; Fine, M.; Meibom, A. Intracellular competition for nitrogen controls dinoflagellate population density in corals, Proceedings of the Royal Society B: Biological Sciences, Volume 287 (2020) no. 1922 | DOI

[26] McCook, L. Competition between corals and algal turfs along a gradient of terrestrial influence in the nearshore central Great Barrier Reef, Coral Reefs, Volume 19 (2001) no. 4, pp. 419-425 | DOI

[27] Morris, L. A.; Voolstra, C. R.; Quigley, K. M.; Bourne, D. G.; Bay, L. K. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses, Trends in Microbiology, Volume 27 (2019) no. 8, pp. 678-689 | DOI

[28] Muller-Parker, G.; Lee, K. W.; Cook, C. B. Changes in the ultrastructure of symbiotic zooxanthellae (Symbiodinium sp., Dinophyceae) in fed and starved sea anemones maintained under high and low light, Journal of Phycology, Volume 32 (1996) no. 6, pp. 987-994 | DOI

[29] Muscatine, L.; Porter, J. W. Reef corals: Mutualistic symbioses adapted to nutrient-poor environments, BioScience, Volume 27 (1977) no. 7, pp. 454-460 | DOI

[30] O'Neil, J. M.; Capone, D. G. Nitrogen cycling in coral reef environments, Nitrogen in the Marine Environment, Elsevier, 2008, pp. 949-989 | DOI

[31] Pandolfi, J. Coral community dynamics at multiple scales, Coral Reefs, Volume 21 (2002) no. 1, pp. 13-23 | DOI

[32] Peng, S.-E.; Moret, A.; Chang, C.; Mayfield, A. B.; Ren, Y.-T.; Chen, W.-N. U.; Giordano, M.; Chen, C.-S. A shift away from mutualism under food-deprived conditions in an anemone-dinoflagellate association, PeerJ, Volume 8 (2020) | DOI

[33] Pernice, M.; Meibom, A.; Van Den Heuvel, A.; Kopp, C.; Domart-Coulon, I.; Hoegh-Guldberg, O.; Dove, S. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis, The ISME Journal, Volume 6 (2012) no. 7, pp. 1314-1324 | DOI

[34] Porter, J. W. Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals, The American Naturalist, Volume 110 (1976) no. 975, pp. 731-742 | DOI

[35] Puntin, G.; Sweet, M.; Fraune, S.; Medina, M.; Sharp, K.; Weis, V. M.; Ziegler, M. Harnessing the power of model organisms To unravel microbial functions in the coral holobiont, Microbiology and Molecular Biology Reviews, Volume 86 (2022) no. 4 | DOI

[36] Rädecker, N.; Pogoreutz, C.; Gegner, H. M.; Cárdenas, A.; Roth, F.; Bougoure, J.; Guagliardo, P.; Wild, C.; Pernice, M.; Raina, J.-B.; Meibom, A.; Voolstra, C. R. Heat stress destabilizes symbiotic nutrient cycling in corals, Proceedings of the National Academy of Sciences, Volume 118 (2021) no. 5 | DOI

[37] Rädecker, N.; Meibom, A. Data for “Symbiotic nutrient cycling enables the long-term survival of Aiptasia in the absence of heterotrophic food sources”, Zenodo, 2022 | DOI

[38] Rädecker, N.; Pogoreutz, C.; Wild, C.; Voolstra, C. R. Stimulated respiration and net photosynthesis in Cassiopeia sp. during glucose enrichment suggests in hospite CO2 limitation of algal endosymbionts, Frontiers in Marine Science, Volume 4 (2017) | DOI

[39] Rädecker, N.; Raina, J.-B.; Pernice, M.; Perna, G.; Guagliardo, P.; Kilburn, M. R.; Aranda, M.; Voolstra, C. R. Using Aiptasia as a model to study metabolic interactions in Cnidarian-Symbiodinium symbioses, Frontiers in Physiology, Volume 9 (2018) | DOI

[40] Radice, V. Z.; Brett, M. T.; Fry, B.; Fox, M. D.; Hoegh-Guldberg, O.; Dove, S. G. Evaluating coral trophic strategies using fatty acid composition and indices, PLOS ONE, Volume 14 (2019) no. 9 | DOI

[41] Rahav, O.; Dubinsky, Z.; Achituv, Y.; Falkowski, P. G. Ammonium metabolism in the zooxanthellate coral, Stylophora pistillata, Proceedings of the Royal Society of London. B. Biological Sciences, Volume 236 (1989) no. 1284, pp. 325-337 | DOI

[42] Rinkevich, B. The contribution of photosynthetic products to coral reproduction, Marine Biology, Volume 101 (1989) no. 2, pp. 259-263 | DOI

[43] Stanley, G. D. Photosymbiosis and the evolution of modern coral reefs, Science, Volume 312 (2006) no. 5775, pp. 857-858 | DOI

[44] Stanley, G. D.; van de Schootbrugge, B. The evolution of the coral–algal symbiosis, Coral bleaching: Patterns, processes, causes and consequences, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 7-19 | DOI

[45] Sunagawa, S.; Wilson, E. C.; Thaler, M.; Smith, M. L.; Caruso, C.; Pringle, J. R.; Weis, V. M.; Medina, M.; Schwarz, J. A. Generation and analysis of transcriptomic resources for a model system on the rise: The sea anemone Aiptasia pallida and its dinoflagellate endosymbiont, BMC Genomics, Volume 10 (2009) no. 1 | DOI

[46] Tremblay, P.; Grover, R.; Maguer, J. F.; Hoogenboom, M.; Ferrier-Pagès, C. Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata, Coral Reefs, Volume 33 (2014) no. 1, pp. 1-13 | DOI

[47] Tremblay, P.; Grover, R.; Maguer, J. F.; Legendre, L.; Ferrier-Pagès, C. Autotrophic carbon budget in coral tissue: A new 13C-based model of photosynthate translocation, Journal of Experimental Biology, Volume 215 (2012) no. 8, pp. 1384-1393 | DOI

[48] Yellowlees, D.; Rees, T. A. V.; Leggat, W. Metabolic interactions between algal symbionts and invertebrate hosts, Plant, Cell & Environment, Volume 31 (2008) no. 5, pp. 679-694 | DOI

Cited by Sources: