Section: Ecology
Topic: Ecology, Population biology

Behavioral flexibility is manipulable and it improves flexibility and innovativeness in a new context

Corresponding author(s): Logan, Corina (corina_logan@eva.mpg.de)

10.24072/pcjournal.284 - Peer Community Journal, Volume 3 (2023), article no. e70.

Get full text PDF Peer reviewed and recommended by PCI
article image

Behavioral flexibility, the ability to adapt behavior to new circumstances, is thought to play an important role in a species’ ability to successfully adapt to new environments and expand its geographic range. However, flexibility is rarely directly tested in a way that would allow us to determine how flexibility works to predict a species’ ability to adapt their behavior to new environments. We use great-tailed grackles (Quiscalus mexicanus; a bird species) as a model to investigate this question because they have recently rapidly expanded their range into North America. We attempted to manipulate grackle flexibility using shaded (light and dark gray) tube reversal learning to determine whether flexibility is generalizable across contexts (multi-access box), and what learning strategies grackles employ. We found that flexibility was manipulable: birds in the manipulated group took fewer trials to pass criterion with increasing reversal number, and they reversed a shade preference in fewer trials by the end of their serial reversals compared to control birds who had only one reversal. Birds that passed their last reversal faster were also more flexible (faster to switch between loci) and innovative (solved more loci) on a multi-access box. All grackles in the manipulated reversal learning group used one learning strategy (epsilon-decreasing) in all reversals, and none used a particular exploration or exploitation strategy earlier or later in their serial reversals. Understanding how flexibility causally relates to other traits will allow researchers to develop robust theory about what flexibility is and when to invoke it as a primary driver in a given context, such as a rapid geographic range expansion.

Published online:
DOI: 10.24072/pcjournal.284
Type: Article de recherche

Logan, Corina 1; Lukas, Dieter 1; Blaisdell, Aaron 2; Johnson-Ulrich, Zoe 3; MacPherson, Maggie 3; Seitz, Benjamin 2; Sevchik, August 4; McCune, Kelsey 3

1 Max Planck Institute for Evolutionary Anthropology, Leipzig , Germany
2 University of California Los Angeles, Los Angeles, USA
3 University of California Santa Barbara, Santa Barbara, USA
4 Arizona State University, Tempe, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_284,
     author = {Logan, Corina and Lukas, Dieter and Blaisdell, Aaron and Johnson-Ulrich, Zoe and MacPherson, Maggie and Seitz, Benjamin and Sevchik, August and McCune, Kelsey},
     title = {Behavioral flexibility is manipulable and it improves flexibility and innovativeness in a new context},
     journal = {Peer Community Journal},
     eid = {e70},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.284},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.284/}
}
TY  - JOUR
AU  - Logan, Corina
AU  - Lukas, Dieter
AU  - Blaisdell, Aaron
AU  - Johnson-Ulrich, Zoe
AU  - MacPherson, Maggie
AU  - Seitz, Benjamin
AU  - Sevchik, August
AU  - McCune, Kelsey
TI  - Behavioral flexibility is manipulable and it improves flexibility and innovativeness in a new context
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.284/
DO  - 10.24072/pcjournal.284
LA  - en
ID  - 10_24072_pcjournal_284
ER  - 
%0 Journal Article
%A Logan, Corina
%A Lukas, Dieter
%A Blaisdell, Aaron
%A Johnson-Ulrich, Zoe
%A MacPherson, Maggie
%A Seitz, Benjamin
%A Sevchik, August
%A McCune, Kelsey
%T Behavioral flexibility is manipulable and it improves flexibility and innovativeness in a new context
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.284/
%R 10.24072/pcjournal.284
%G en
%F 10_24072_pcjournal_284
Logan, Corina; Lukas, Dieter; Blaisdell, Aaron; Johnson-Ulrich, Zoe; MacPherson, Maggie; Seitz, Benjamin; Sevchik, August; McCune, Kelsey. Behavioral flexibility is manipulable and it improves flexibility and innovativeness in a new context. Peer Community Journal, Volume 3 (2023), article  no. e70. doi : 10.24072/pcjournal.284. https://peercommunityjournal.org/articles/10.24072/pcjournal.284/

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.ecology.100407

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Aplin, L. M.; Farine, D. R.; Morand-Ferron, J.; Cockburn, A.; Thornton, A.; Sheldon, B. C. Experimentally induced innovations lead to persistent culture via conformity in wild birds, Nature, Volume 518 (2014) no. 7540, pp. 538-541 | DOI

[2] Auersperg, A. M. I.; von Bayern, A. M. P.; Gajdon, G. K.; Huber, L.; Kacelnik, A. Flexibility in Problem Solving and Tool Use of Kea and New Caledonian Crows in a Multi Access Box Paradigm, PLoS ONE, Volume 6 (2011) no. 6 | DOI

[3] Bartoń, K. MuMIn: Multi-model inference, 2020 (https://cran.r-project.org/package=MuMIn)

[4] Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4, Journal of Statistical Software, Volume 67 (2015) no. 1 | DOI

[5] Bates, D.; Maechler, M.; Bolker, B. lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42, 2012 (https://cran.r-project.org/web/packages/lme4/lme4.pdf)

[6] Bergstrom, C.; Lachmann, M. Shannon information and biological fitness, Manufacturing Engineer, IEEE, 2004, pp. 50-54 | DOI

[7] Blaisdell, A. P.; Cook, R. G. Integration of spatial maps in pigeons, Animal Cognition, Volume 8 (2004) no. 1, pp. 7-16 | DOI

[8] Bussey, T. J.; Padain, T. L.; Skillings, E. A.; Winters, B. D.; Morton, A. J.; Saksida, L. M. The touchscreen cognitive testing method for rodents: How to get the best out of your rat, Learning & Memory, Volume 15 (2008) no. 7, pp. 516-523 | DOI

[9] Chow, P. K. Y.; Lea, S. E.; Leaver, L. A. How practice makes perfect: the role of persistence, flexibility and learning in problem-solving efficiency, Animal Behaviour, Volume 112 (2016), pp. 273-283 | DOI

[10] Cook, R. G.; Geller, A. I.; Zhang, G.-R.; Gowda, R. Touchscreen-enhanced visual learning in rats, Behavior Research Methods, Instruments, & Computers, Volume 36 (2004) no. 1, pp. 101-106 | DOI

[11] Coulon, A. An experiment to improve our understanding of the link between behavioral flexibility and innovativeness, Peer Community in Ecology (2023) | DOI

[12] Diquelou, M. C.; Griffin, A. S.; Sol, D. The role of motor diversity in foraging innovations: a cross-species comparison in urban birds, Behavioral Ecology, Volume 27 (2015) no. 2, pp. 584-591 | DOI

[13] Drayton, L.; Santos, L. Insights into Intraspecies Variation in Primate Prosocial Behavior: Capuchins (Cebus apella) Fail to Show Prosociality on a Touchscreen Task, Behavioral Sciences, Volume 4 (2014) no. 2, pp. 87-101 | DOI

[14] Eddelbuettel, D.; François, R. Rcpp : Seamless R and C++ Integration, Journal of Statistical Software, Volume 40 (2011) no. 8 | DOI

[15] Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses, Behavior Research Methods, Volume 41 (2009) no. 4, pp. 1149-1160 | DOI

[16] Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences, Behavior Research Methods, Volume 39 (2007) no. 2, pp. 175-191 | DOI

[17] Federspiel, I. G.; Garland, A.; Guez, D.; Bugnyar, T.; Healy, S. D.; Güntürkün, O.; Griffin, A. S. Adjusting foraging strategies: a comparison of rural and urban common mynas (Acridotheres tristis), Animal Cognition, Volume 20 (2016) no. 1, pp. 65-74 | DOI

[18] Gabry, J.; Češnovar, R. Cmdstanr: R interface to ’CmdStan’, 2021 (https://mc-stan.org/cmdstanr/)

[19] Gamer, M.; Lemon, J.; Gamer, M.; Robinson, A.; Kendall’s, W. Package “irr.” Various coefficients of interrater reliability and agreement, 2012 (https://cran.r-project.org/web/packages/irr/irr.pdf)

[20] Griffin, A. S.; Guez, D. Innovation and problem solving: A review of common mechanisms, Behavioural Processes, Volume 109 (2014), pp. 121-134 | DOI

[21] Griffin, A. S.; Guez, D.; Federspiel, I.; Diquelou, M.; Lermite, F. Invading New Environments: A Mechanistic Framework Linking Motor Diversity and Cognition to Establishment Success, Biological Invasions and Animal Behaviour, Cambridge University Press, 2016, pp. 26-46 | DOI

[22] Griffin, A. S.; Guez, D.; Lermite, F.; Patience, M. Tracking Changing Environments: Innovators Are Fast, but Not Flexible Learners, PLoS ONE, Volume 8 (2013) no. 12 | DOI

[23] Hadfield, J. D. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package, Journal of Statistical Software, Volume 33 (2010) no. 2 | DOI

[24] Hadfield, J. MCMCglmm course notes, 2014 (http://www.jcsantosresearch.org/Class_2014_Spring_Comparative/pdf/week_12/CourseNotes_MCMCglmm.pdf)

[25] Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models, 2019 (https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html)

[26] Hernán, M. A.; Robins, J. M. Instruments for Causal Inference, Epidemiology, Volume 17 (2006) no. 4, pp. 360-372 | DOI

[27] Homberg, J. R.; Pattij, T.; Janssen, M. C. W.; Ronken, E.; De Boer, S. F.; Schoffelmeer, A. N. M.; Cuppen, E. Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility, European Journal of Neuroscience, Volume 26 (2007) no. 7, pp. 2066-2073 | DOI

[28] Hutcheon, J. A.; Chiolero, A.; Hanley, J. A. Random measurement error and regression dilution bias, BMJ, Volume 340 (2010) no. jun23 2 | DOI

[29] Isden, J.; Panayi, C.; Dingle, C.; Madden, J. Performance in cognitive and problem-solving tasks in male spotted bowerbirds does not correlate with mating success, Animal Behaviour, Volume 86 (2013) no. 4, pp. 829-838 | DOI

[30] Kangas, B. D.; Bergman, J. Touchscreen technology in the study of cognition-related behavior, Behavioural Pharmacology, Volume 28 (2017) no. 8, pp. 623-629 | DOI

[31] Lajeunesse, M. J. Recovering Missing or Partial Data from Studies: a Survey of Conversions and Imputations for Meta-analysis, Handbook of Meta-analysis in Ecology and Evolution, Princeton University Press, 2017 | DOI

[32] Lea, S. E. G.; Chow, P. K. Y.; Leaver, L. A.; McLaren, I. P. L. Behavioral flexibility: A review, a model, and some exploratory tests, Learning & Behavior, Volume 48 (2020) no. 1, pp. 173-187 | DOI

[33] Lefebvre, L.; Whittle, P.; Lascaris, E.; Finkelstein, A. Feeding innovations and forebrain size in birds, Animal Behaviour, Volume 53 (1997) no. 3, pp. 549-560 | DOI

[34] Lin, G. Reactable: Interactive data tables based on ’react table’, 2020 (https://glin.github.io/reactable/)

[35] Liu, Y.; Day, L. B.; Summers, K.; Burmeister, S. S. Learning to learn: advanced behavioural flexibility in a poison frog, Animal Behaviour, Volume 111 (2016), pp. 167-172 | DOI

[36] Logan, C. J. Behavioral flexibility in an invasive bird is independent of other behaviors, PeerJ, Volume 4 (2016) | DOI

[37] Logan, C. J.; Avin, S.; Boogert, N.; Buskell, A.; Cross, F. R.; Currie, A.; Jelbert, S.; Lukas, D.; Mares, R.; Navarrete, A. F.; Shigeno, S.; Montgomery, S. H. Beyond brain size: Uncovering the neural correlates of behavioral and cognitive specialization, Comparative Cognition & Behavior Reviews, Volume 13 (2018), pp. 55-89 | DOI

[38] Logan, C.; Lukas, D.; Blaisdell, A.; Johnson-Ulrich, Z.; MacPherson, M.; Seitz, B.; Sevchik, A.; McCune K Data: Is behavioral flexibility manipulatable and, if so, does it improve flexibility and problem solving in a new context?, Knowledge Network for Biocomplexity, Data package, 2023 | DOI

[39] Logan, C.; McCune, K.; MacPherson, M.; Johnson-Ulrich, Z.; Rowney, C.; Seitz, B.; Blaisdell, A.; Deffner, D.; Wascher, C. Are the more flexible great-tailed grackles also better at behavioral inhibition?, PsyArXiv (2021) | DOI

[40] Logan, C.; McCune, K.; Marfori, Z.; Rolls, C.; Lukas, D. Implementing a rapid geographic range expansion - the role of behavior and habitat changes, EcoEvoRxiv (2023) | DOI

[41] Logan, C.; Shaw, R.; Lukas, D.; McCune, K. How to succeed in human modified environments, In principle acceptance by PCI Ecology of the version on 8 Sep 2022 (2022) (http://corinalogan.com/ManyIndividuals/mi1.html)

[42] Lukas, D.; McCune, K.; Blaisdell, A.; Johnson-Ulrich, Z.; MacPherson, M.; Seitz, B.; Sevchik, A.; Logan, C. Behavioral flexibility is manipulatable and it improves flexibility and problem solving in a new context: Post-hoc analyses of the components of behavioral flexibility, EcoEvoRxiv (2022) | DOI

[43] Manrique, H. M.; Völter, C. J.; Call, J. Repeated innovation in great apes, Animal Behaviour, Volume 85 (2013) no. 1, pp. 195-202 | DOI

[44] McCune, K.; Blaisdell, A.; Johnson-Ulrich, Z.; Lukas, D.; MacPherson, M.; Seitz, B.; Sevchik, A.; Logan, C. Repeatability of performance within and across contexts measuring behavioral flexibility, EcoEvoRxiv (2022) | DOI

[45] McCune, K. M. M. R. C. B. L. F. M. L. C. Is behavioral flexibility linked with exploration, but not boldness, persistence, or motor diversity?, In principle acceptance by PCI Ecology of the version on 27 Mar 2019 (2019) (http://corinalogan.com/Preregistrations/g_exploration.html)

[46] McElreath, R. Statistical Rethinking, Chapman and Hall/CRC, 2018 | DOI

[47] McElreath, R. Rethinking: Statistical rethinking book package, 2020 (https://github.com/rmcelreath/rethinking)

[48] McInerney, R. Multi-armed bandit bayesian decision making, Univ. Oxford Press, Oxford, 2010

[49] Mikhalevich, I.; Powell, R.; Logan, C. Is behavioural flexibility evidence of cognitive complexity? How evolution can inform comparative cognition, Interface Focus, Volume 7 (2017) no. 3 | DOI

[50] O'Hara, M.; Huber, L.; Gajdon, G. K. The advantage of objects over images in discrimination and reversal learning by kea, Nestor notabilis, Animal Behaviour, Volume 101 (2015), pp. 51-60 | DOI

[51] R Core Team A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2017 (https://www.r-project.org/)

[52] Rayburn-Reeves, R. M.; Stagner, J. P.; Kirk, C. R.; Zentall, T. R. Reversal learning in rats (Rattus norvegicus) and pigeons (Columba livia): Qualitative differences in behavioral flexibility., Journal of Comparative Psychology, Volume 127 (2013) no. 2, pp. 202-211 | DOI

[53] Sawa, K.; Leising, K. J.; Blaisdell, A. P. Sensory Preconditioning in Spatial Learning Using a Touch Screen Task in Pigeons, Journal of Experimental Psychology: Animal Behavior Processes, Volume 31 (2005) no. 3, pp. 368-375 | DOI

[54] Schusterman, R. J. Transfer Effects of Successive Discrimination-Reversal Training in Chimpanzees, Science, Volume 137 (1962) no. 3528, pp. 422-423 | DOI

[55] Seitz, B. M.; McCune, K.; MacPherson, M.; Bergeron, L.; Blaisdell, A. P.; Logan, C. J. Using touchscreen equipped operant chambers to study animal cognition. Benefits, limitations, and advice, PLOS ONE, Volume 16 (2021) no. 2 | DOI

[56] Shaw, R. C.; Boogert, N. J.; Clayton, N. S.; Burns, K. C. Wild psychometrics: evidence for ‘general’ cognitive performance in wild New Zealand robins, Petroica longipes, Animal Behaviour, Volume 109 (2015), pp. 101-111 | DOI

[57] Sol, D.; Duncan, R. P.; Blackburn, T. M.; Cassey, P.; Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments, Proceedings of the National Academy of Sciences, Volume 102 (2005) no. 15, pp. 5460-5465 | DOI

[58] Sol, D.; Lefebvre, L. Behavioural flexibility predicts invasion success in birds introduced to New Zealand, Oikos, Volume 90 (2003) no. 3, pp. 599-605 | DOI

[59] Sol, D.; Székely, T.; Liker, A.; Lefebvre, L. Big-brained birds survive better in nature, Proceedings of the Royal Society B: Biological Sciences, Volume 274 (2007) no. 1611, pp. 763-769 | DOI

[60] Sol, D.; Timmermans, S.; Lefebvre, L. Behavioural flexibility and invasion success in birds, Animal Behaviour, Volume 63 (2002) no. 3, pp. 495-502 | DOI

[61] Spence, K. W. The nature of discrimination learning in animals, Psychological Review, Volume 43 (1936) no. 5, pp. 427-449 | DOI

[62] Stan Development Team RStan: The R interface to Stan, 2020 (https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html)

[63] Summers, J.; Lukas, D.; Logan, C. J.; Chen, N. The role of climate change and niche shifts in divergent range dynamics of a sister-species pair, Peer Community Journal, Volume 3 (2023) | DOI

[64] Ushey, K.; Allaire, J.; Wickham, H.; Ritchie, G. Rstudioapi: Safely access the RStudio API, 2020 (https://cran.r-project.org/web/packages/rstudioapi/rstudioapi.pdf)

[65] Warren, J. Primate Learning in Comparative Perspective1 1The preparation of this chapter and much of the previously unpublished research described here were supported by Grant M-04726 from the National Institute of Mental Health, U. S. Public Health Service (Behavior of Nonhuman Primates), Volume 1, Elsevier, 1965, pp. 249-281 | DOI

[66] Warren, J. M. The Comparative Psychology of Learning, Annual Review of Psychology, Volume 16 (1965) no. 1, pp. 95-118 | DOI

[67] Warren, J. M. Reversal learning and the formation of learning sets by cats and rhesus monkeys, Journal of Comparative and Physiological Psychology, Volume 61 (1966) no. 3, pp. 421-428 | DOI

[68] Wehtje, W. The range expansion of the great-tailed grackle ( Quiscalus mexicanus Gmelin) in North America since 1880, Journal of Biogeography, Volume 30 (2003) no. 10, pp. 1593-1607 | DOI

[69] Wickham, H. ggplot2, Use R!, Springer International Publishing, Cham, 2016 | DOI

[70] Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A grammar of data manipulation, 2021 (https://cran.r-project.org/web/packages/dplyr/index.html)

[71] Wilke, C. Cowplot: Streamlined plot theme and plot annotations for “ggplot2.” R package version 0.9.2; 2017, 2017 (https://cran.r-project.org/package=cowplot)

[72] Wolf, J. E.; Urbano, C. M.; Ruprecht, C. M.; Leising, K. J. Need to train your rat? There is an App for that: A touchscreen behavioral evaluation system, Behavior Research Methods, Volume 46 (2013) no. 1, pp. 206-214 | DOI

[73] Wright, T.; Eberhard, J.; Hobson, E.; Avery, M.; Russello, M. Behavioral flexibility and species invasions: the adaptive flexibility hypothesis, Ethology Ecology & Evolution, Volume 22 (2010) no. 4, pp. 393-404 | DOI

[74] Xie, Y. Knitr: A general-purpose package for dynamic report generation in r. R package version, 1, 2013 (https://cran.r-project.org/web/packages/knitr/index.html)

[75] Xie, Y. Dynamic Documents with R and knitr, Chapman and Hall/CRC, 2017 | DOI

[76] Xie, Y. Knitr: A comprehensive tool for reproducible research in r In: In: Implementing reproducible research, Chapman and Hall/CRC (2018), pp. 3-31 | DOI

[77] Xie, Y. formatR: Format r code automatically, 2019 (https://yihui.org/formatr/)

[78] Zhu, H. kableExtra: Construct complex table with ’kable’ and pipe syntax, 2021 (https://cran.r-project.org/web/packages/kableExtra/kableExtra.pdf)

Cited by Sources:

block.super