Neuroscience

Optimizing the Benefits of Mental Practice on Motor Acquisition and Consolidation with Moderate-Intensity Exercise

10.24072/pcjournal.296 - Peer Community Journal, Volume 3 (2023), article no. e61.

Get full text PDF Peer reviewed and recommended by PCI

The optimization of mental practice (MP) protocols matters for sport and motor rehabilitation. In this study, we were interested in the benefits of moderate-intensity exercise in MP, given its positive effects on the acquisition and consolidation of motor skills induced by physical practice (PP). Four experimental groups were tested: i) physical practice without exercise (PP-Rest), ii) mental practice without exercise (MP-Rest), iii) mental practice preceded by Exercise (Exe-MP), and iv) mental practice followed by Exercise (MP-Exe). We hypothesized that exercise before MP would further increase speed and accuracy at a finger-sequence task measured right after MP (potentiation of motor acquisition), whereas exercise after MP would further increase speed and accuracy the day after MP (promotion of motor consolidation). Motor performance (movement speed and accuracy) was measured during a sequential finger tapping task before (Pre-Test), immediately after (Post-Test 0h, acquisition), and one day after practice (Post-Test 24h, consolidation). Results suggest that exercise before MP did not additionally improve motor acquisition in comparison to the MP-Rest group (both for accuracy and speed, p’s>0.05). Interestingly, moderate-intensity exercise after MP further increased performance during motor consolidation (speed, p=0.051; accuracy, p=0.028), at the level of the PP-Rest group. This novel finding represents a promising advance in the optimization of mental practice protocols in sport-related and rehabilitation settings.

Published online:
DOI: 10.24072/pcjournal.296
Keywords: motor imagery, acquisition, consolidation, performance, motor learning
Rannaud Monany, Dylan 1; Lebon, Florent 1, 2; Papaxanthis, Charalambos 1

1 INSERM UMR1093-CAPS, Université Bourgogne, UFR des Sciences du Sport, F-21000, Dijon, France
2 Institut Universitaire de France (IUF), France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_296,
     author = {Rannaud Monany, Dylan and Lebon, Florent and Papaxanthis, Charalambos},
     title = {Optimizing the {Benefits} of {Mental} {Practice} on {Motor} {Acquisition} and {Consolidation} with {Moderate-Intensity} {Exercise}},
     journal = {Peer Community Journal},
     eid = {e61},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.296},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.296/}
}
TY  - JOUR
AU  - Rannaud Monany, Dylan
AU  - Lebon, Florent
AU  - Papaxanthis, Charalambos
TI  - Optimizing the Benefits of Mental Practice on Motor Acquisition and Consolidation with Moderate-Intensity Exercise
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.296/
DO  - 10.24072/pcjournal.296
LA  - en
ID  - 10_24072_pcjournal_296
ER  - 
%0 Journal Article
%A Rannaud Monany, Dylan
%A Lebon, Florent
%A Papaxanthis, Charalambos
%T Optimizing the Benefits of Mental Practice on Motor Acquisition and Consolidation with Moderate-Intensity Exercise
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.296/
%R 10.24072/pcjournal.296
%G en
%F 10_24072_pcjournal_296
Rannaud Monany, Dylan; Lebon, Florent; Papaxanthis, Charalambos. Optimizing the Benefits of Mental Practice on Motor Acquisition and Consolidation with Moderate-Intensity Exercise. Peer Community Journal, Volume 3 (2023), article  no. e61. doi : 10.24072/pcjournal.296. https://peercommunityjournal.org/articles/10.24072/pcjournal.296/

Peer reviewed and recommended by PCI : 10.24072/pci.neuro.100139

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Avanzino, L.; Gueugneau, N.; Bisio, A.; Ruggeri, P.; Papaxanthis, C.; Bove, M. Motor cortical plasticity induced by motor learning through mental practice, Frontiers in Behavioral Neuroscience, Volume 9 (2015) | DOI

[2] Bekinschtein, P.; Cammarota, M.; Medina, J. H. BDNF and memory processing, Neuropharmacology, Volume 76 (2014), pp. 677-683 | DOI

[3] Bonassi, G.; Biggio, M.; Bisio, A.; Ruggeri, P.; Bove, M.; Avanzino, L. Provision of somatosensory inputs during motor imagery enhances learning-induced plasticity in human motor cortex, Scientific Reports, Volume 7 (2017) no. 1 | DOI

[4] Devanne, H.; Allart, E. Boosting brain motor plasticity with physical exercise, Neurophysiologie Clinique, Volume 49 (2019) no. 2, pp. 91-93 | DOI

[5] Ferris, L. T.; Williams, J. S.; Shen, C.-L. The Effect of Acute Exercise on Serum Brain-Derived Neurotrophic Factor Levels and Cognitive Function, Medicine & Science in Sports & Exercise, Volume 39 (2007) no. 4, pp. 728-734 | DOI

[6] Foley, T. E.; Fleshner, M. Neuroplasticity of Dopamine Circuits After Exercise: Implications for Central Fatigue, NeuroMolecular Medicine, Volume 10 (2008) no. 2, pp. 67-80 | DOI

[7] Fox S.M.; Naughton J. P.; Haskell W. L. Physical activity and the prevention of coronary heart disease, Annals of Clinical Research, Volume 3, pp. 404-432

[8] Freitas, E.; Saimpont, A.; Blache, Y.; Debarnot, U. Acquisition and consolidation of sequential footstep movements with physical and motor imagery practice, Scandinavian Journal of Medicine & Science in Sports, Volume 30 (2020) no. 12, pp. 2477-2484 | DOI

[9] Gentili, R.; Han, C. E.; Schweighofer, N.; Papaxanthis, C. Motor Learning Without Doing: Trial-by-Trial Improvement in Motor Performance During Mental Training, Journal of Neurophysiology, Volume 104 (2010) no. 2, pp. 774-783 | DOI

[10] Gentili, R.; Papaxanthis, C.; Pozzo, T. Improvement and generalization of arm motor performance through motor imagery practice, Neuroscience, Volume 137 (2006) no. 3, pp. 761-772 | DOI

[11] Grosprêtre, S.; Jacquet, T.; Lebon, F.; Papaxanthis, C.; Martin, A. Neural mechanisms of strength increase after one-week motor imagery training, European Journal of Sport Science, Volume 18 (2018) no. 2, pp. 209-218 | DOI

[12] Grosprêtre, S.; Ruffino, C.; Lebon, F. Motor imagery and cortico-spinal excitability: A review, European Journal of Sport Science, Volume 16 (2015) no. 3, pp. 317-324 | DOI

[13] Guillot, A.; Collet, C.; Nguyen, V. A.; Malouin, F.; Richards, C.; Doyon, J. Functional neuroanatomical networks associated with expertise in motor imagery, NeuroImage, Volume 41 (2008) no. 4, pp. 1471-1483 | DOI

[14] Hardwick, R. M.; Caspers, S.; Eickhoff, S. B.; Swinnen, S. P. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution, Neuroscience & Biobehavioral Reviews, Volume 94 (2018), pp. 31-44 | DOI

[15] Hétu, S.; Grégoire, M.; Saimpont, A.; Coll, M.-P.; Eugène, F.; Michon, P.-E.; Jackson, P. L. The neural network of motor imagery: An ALE meta-analysis, Neuroscience & Biobehavioral Reviews, Volume 37 (2013) no. 5, pp. 930-949 | DOI

[16] Karni, A.; Meyer, G.; Rey-Hipolito, C.; Jezzard, P.; Adams, M. M.; Turner, R.; Ungerleider, L. G. The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex, Proceedings of the National Academy of Sciences, Volume 95 (1998) no. 3, pp. 861-868 | DOI

[17] Kilteni, K.; Andersson, B. J.; Houborg, C.; Ehrsson, H. H. Motor imagery involves predicting the sensory consequences of the imagined movement, Nature Communications, Volume 9 (2018) no. 1 | DOI

[18] Kraeutner, S. N.; Stratas, A.; McArthur, J. L.; Helmick, C. A.; Westwood, D. A.; Boe, S. G. Neural and Behavioral Outcomes Differ Following Equivalent Bouts of Motor Imagery or Physical Practice, Journal of Cognitive Neuroscience, Volume 32 (2020) no. 8, pp. 1590-1606 | DOI

[19] Krakauer, J. W.; Shadmehr, R. Consolidation of motor memory, Trends in Neurosciences, Volume 29 (2006) no. 1, pp. 58-64 | DOI

[20] Kuo, H.-I.; Qi, F.-X.; Paulus, W.; Kuo, M.-F.; Nitsche, M. A. Noradrenergic Enhancement of Motor Learning, Attention, and Working Memory in Humans, International Journal of Neuropsychopharmacology, Volume 24 (2021) no. 6, pp. 490-498 | DOI

[21] Lacourse, M. G.; Turner, J. A.; Randolph-Orr, E.; Schandler, S. L.; Cohen, M. J. Cerebral and cerebellar sensorimotor plasticity following motor imagery-based mental practice of a sequential movement, The Journal of Rehabilitation Research and Development, Volume 41 (2004) no. 4 | DOI

[22] Lambourne, K.; Tomporowski, P. The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis, Brain Research, Volume 1341 (2010), pp. 12-24 | DOI

[23] Lebon, F.; Horn, U.; Domin, M.; Lotze, M. Motor imagery training: Kinesthetic imagery strategy and inferior parietal fMRI activation, Human Brain Mapping, Volume 39 (2018) no. 4, pp. 1805-1813 | DOI

[24] Loison, B.; Moussaddaq, A.-S.; Cormier, J.; Richard, I.; Ferrapie, A.-L.; Ramond, A.; Dinomais, M. Translation and validation of the French Movement Imagery Questionnaire – Revised Second version (MIQ-RS), Annals of Physical and Rehabilitation Medicine, Volume 56 (2013) no. 3, pp. 157-173 | DOI

[25] Mang, C. S.; Snow, N. J.; Campbell, K. L.; Ross, C. J. D.; Boyd, L. A. A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning, Journal of Applied Physiology, Volume 117 (2014) no. 11, pp. 1325-1336 | DOI

[26] Mizuguchi, N.; Sakamoto, M.; Muraoka, T.; Nakagawa, K.; Kanazawa, S.; Nakata, H.; Moriyama, N.; Kanosue, K. The Modulation of Corticospinal Excitability during Motor Imagery of Actions with Objects, PLoS ONE, Volume 6 (2011) no. 10 | DOI

[27] Neige, C.; Rannaud Monany, D.; Stinear, C. M.; Byblow, W. D.; Papaxanthis, C.; Lebon, F. Unravelling the Modulation of Intracortical Inhibition During Motor Imagery: An Adaptive Threshold-Hunting Study, Neuroscience, Volume 434 (2020), pp. 102-110 | DOI

[28] Pascual-Leone, A.; Nguyet, D.; Cohen, L. G.; Brasil-Neto, J. P.; Cammarota, A.; Hallett, M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills, Journal of Neurophysiology, Volume 74 (1995) no. 3, pp. 1037-1045 | DOI

[29] Rannaud Monany, D.; Lebon, F.; Dupont, W.; Papaxanthis, C. Mental practice modulates functional connectivity between the cerebellum and the primary motor cortex, iScience, Volume 25 (2022) no. 6 | DOI

[30] Rannaud Monany, D.; Papaxanthis, C.; Guillot, A.; Lebon, F. Motor imagery and action observation following immobilization-induced hypoactivity: A narrative review, Annals of Physical and Rehabilitation Medicine, Volume 65 (2022) no. 4 | DOI

[31] Riebe, D.; Ehrman, J.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription, Wolters Kluwer Health, Philadelphia, PA, 2018

[32] Roig, M.; Nordbrandt, S.; Geertsen, S. S.; Nielsen, J. B. The effects of cardiovascular exercise on human memory: A review with meta-analysis, Neuroscience and Biobehavioral Reviews, Volume 37 (2013) no. 8, pp. 1645-1666 | DOI

[33] Rozand, V.; Lebon, F.; Stapley, P. J.; Papaxanthis, C.; Lepers, R. A prolonged motor imagery session alter imagined and actual movement durations: Potential implications for neurorehabilitation, Behavioural Brain Research, Volume 297 (2016), pp. 67-75 | DOI

[34] Ruffino, C.; Gaveau, J.; Papaxanthis, C.; Lebon, F. An acute session of motor imagery training induces use-dependent plasticity, Scientific Reports, Volume 9 (2019) no. 1 | DOI

[35] Ruffino, C.; Papaxanthis, C.; Lebon, F. Neural plasticity during motor learning with motor imagery practice: Review and perspectives, Neuroscience, Volume 341 (2017), pp. 61-78 | DOI

[36] Ruffino, C.; Rannaud Monany, D.; Papaxanthis, C.; Hilt, P. M.; Gaveau, J.; Lebon, F. Smoothness Discriminates Physical from Motor Imagery Practice of Arm Reaching Movements, Neuroscience, Volume 483 (2022), pp. 24-31 | DOI

[37] Ruffino, C.; Truong, C.; Dupont, W.; Bouguila, F.; Michel, C.; Lebon, F.; Papaxanthis, C. Acquisition and consolidation processes following motor imagery practice, Scientific Reports, Volume 11 (2021) no. 1 | DOI

[38] Segal, S. K.; Cotman, C. W.; Cahill, L. F. Exercise-Induced Noradrenergic Activation Enhances Memory Consolidation in Both Normal Aging and Patients with Amnestic Mild Cognitive Impairment, Journal of Alzheimer's Disease, Volume 32 (2012) no. 4, pp. 1011-1018 | DOI

[39] Singh, A. M.; Duncan, R. E.; Neva, J. L.; Staines, W. R. Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle, BMC Sports Science, Medicine and Rehabilitation, Volume 6 (2014) no. 1 | DOI

[40] Singh, A. M.; Staines, W. R. The Effects of Acute Aerobic Exercise on the Primary Motor Cortex, Journal of Motor Behavior, Volume 47 (2015) no. 4, pp. 328-339 | DOI

[41] Skriver, K.; Roig, M.; Lundbye-Jensen, J.; Pingel, J.; Helge, J. W.; Kiens, B.; Nielsen, J. B. Acute exercise improves motor memory: Exploring potential biomarkers, Neurobiology of Learning and Memory, Volume 116 (2014), pp. 46-58 | DOI

[42] de Sousa Fernandes, M. S.; Ordônio, T. F.; Santos, G. C. J.; Santos, L. E. R.; Calazans, C. T.; Gomes, D. A.; Santos, T. M. Effects of Physical Exercise on Neuroplasticity and Brain Function: A Systematic Review in Human and Animal Studies, Neural Plasticity, Volume 2020 (2020), pp. 1-21 | DOI

[43] Spampinato, D.; Celnik, P. Temporal dynamics of cerebellar and motor cortex physiological processes during motor skill learning, Scientific Reports, Volume 7 (2017) no. 1 | DOI

[44] Statton, M. A.; Encarnacion, M.; Celnik, P.; Bastian, A. J. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition, PLOS ONE, Volume 10 (2015) no. 10 | DOI

[45] Thomas, R.; Beck, M. M.; Lind, R. R.; Korsgaard Johnsen, L.; Geertsen, S. S.; Christiansen, L.; Ritz, C.; Roig, M.; Lundbye-Jensen, J. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing, Neural Plasticity, Volume 2016 (2016), pp. 1-11 | DOI

[46] Truong, C.; Hilt, P. M.; Bouguila, F.; Bove, M.; Lebon, F.; Papaxanthis, C.; Ruffino, C. Time-of-day effects on skill acquisition and consolidation after physical and mental practices, Scientific Reports, Volume 12 (2022) no. 1 | DOI

[47] Walker, M. P.; Brakefield, T.; Seidman, J.; Morgan, A.; Hobson, J. A.; Stickgold, R. Sleep and the Time Course of Motor Skill Learning, Learning & Memory, Volume 10 (2003) no. 4, pp. 275-284 | DOI

[48] Ziemann, U.; Ilić, T. V.; Jung, P. Chapter 3 Long-term potentiation (LTP)-like plasticity and learning in human motor cortex – investigations with transcranial magnetic stimulation (TMS), Supplements to Clinical Neurophysiology, Elsevier, 2006, pp. 19-25 | DOI

[49] Zubac, D. Moderate-intensity aerobic exercise augments motor consolidation after mental practice coupled with motor imagery, Peer Community in Neuroscience (2023) | DOI

Cited by Sources: