Ecotoxicology & Environmental Chemistry

DRomics, a workflow to exploit dose-response omics data in ecotoxicology

10.24072/pcjournal.325 - Peer Community Journal, Volume 3 (2023), article no. e90.

Get full text PDF Peer reviewed and recommended by PCI

Omics technologies has opened new possibilities to assess environmental risks and to understand the mode(s) of action of pollutants. Coupled to dose-response experimental designs, they allow a non-targeted assessment of organism responses at the molecular level along an exposure gradient. However, describing the dose-response relationships on such high-throughput data is no easy task. In a first part, we review the software available for this purpose, and their main features. We set out arguments on some statistical and modeling choices we have made while developing the R package DRomics and its positioning compared to others tools. The DRomics main analysis workflow is made available through a web interface, namely a shiny app named DRomics-shiny. Next, we present the new functionalities recently implemented. DRomics has been augmented especially to be able to handle varied omics data considering the nature of the measured signal (e.g. counts of reads in RNAseq) and the way data were collected (e.g. batch effect, situation with no experimental replicates). Another important upgrade is the development of tools to ease the biological interpretation of results. Various functions are proposed to visualize, summarize and compare the responses, for different biological groups (defined from biological annotation), optionally at different experimental levels (e.g. measurements at several omics level or in different experimental conditions). A new shiny app named DRomicsInterpreter-shiny is dedicated to the biological interpretation of results. The institutional web page gathers links to all resources related to DRomics, including the two shiny applications.

Published online:
DOI: 10.24072/pcjournal.325
Keywords: Dose-response modeling, BenchMark Dose (BMD), Adverse Outcome Pathway (AOP), Mode of Action (MoA), environmental risk assessment, transcriptomics, proteomics, metabolomics, multiomics
Delignette-Muller, Marie Laure 1; Siberchicot, Aurélie 1; Larras, Floriane 1; Billoir, Elise 2

1 Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
2 Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Delignette-Muller, Marie Laure and Siberchicot, Aur\'elie and Larras, Floriane and Billoir, Elise},
     title = {DRomics, a workflow to exploit dose-response omics data in ecotoxicology},
     journal = {Peer Community Journal},
     eid = {e90},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.325},
     language = {en},
     url = {}
AU  - Delignette-Muller, Marie Laure
AU  - Siberchicot, Aurélie
AU  - Larras, Floriane
AU  - Billoir, Elise
TI  - DRomics, a workflow to exploit dose-response omics data in ecotoxicology
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.325
LA  - en
ID  - 10_24072_pcjournal_325
ER  - 
%0 Journal Article
%A Delignette-Muller, Marie Laure
%A Siberchicot, Aurélie
%A Larras, Floriane
%A Billoir, Elise
%T DRomics, a workflow to exploit dose-response omics data in ecotoxicology
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.325
%G en
%F 10_24072_pcjournal_325
Delignette-Muller, Marie Laure; Siberchicot, Aurélie; Larras, Floriane; Billoir, Elise. DRomics, a workflow to exploit dose-response omics data in ecotoxicology. Peer Community Journal, Volume 3 (2023), article  no. e90. doi : 10.24072/pcjournal.325.

Peer reviewed and recommended by PCI : 10.24072/pci.ecotoxenvchem.100105

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Andersen, M. E.; Pendse, S. N.; Black, M. B.; McMullen, P. D. Application of transcriptomic data, visualization tools and bioinformatics resources for informing mode of action, Current Opinion in Toxicology, Volume 9 (2018), pp. 21-27 | DOI

[2] Burnham, K. P.; Anderson, D. R. Multimodel Inference, Sociological Methods & Research, Volume 33 (2004) no. 2, pp. 261-304 | DOI

[3] Cosio, C. New features of DRomics workflow for improved analyze of dose-response omics data in ecotoxicology, Peer Community In Ecotoxicology and Environmental Chemistry (2023) | DOI

[4] Creusot, N.; Chaumet, B.; Eon, M.; Mazzella, N.; Moreira, A.; Morin, S. Metabolomics insight into the influence of environmental factors in responses of freshwater biofilms to the model herbicide diuron, Environmental Science and Pollution Research, Volume 29 (2021) no. 20, pp. 29332-29347 | DOI

[5] Delignette-Muller, M. L.; Lopes, C.; Veber, P.; Charles, S. Statistical Handling of Reproduction Data for Exposure-Response Modeling, Environmental Science & Technology, Volume 48 (2014) no. 13, pp. 7544-7551 | DOI

[6] Dubois, C.; Pophillat, M.; Audebert, S.; Fourquet, P.; Lecomte, C.; Dubourg, N.; Galas, S.; Camoin, L.; Frelon, S. Differential modification of the C. elegans proteome in response to acute and chronic gamma radiation: Link with reproduction decline, Science of The Total Environment, Volume 676 (2019), pp. 767-781 | DOI

[7] EFSA Scientific Committee; Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M. J.; Knutsen, K. H.; More, S.; Mortensen, A.; Naegeli, H.; Noteborn, H.; Ockleford, C.; Ricci, A.; Rychen, G.; Silano, V.; Solecki, R.; Turck, D.; Aerts, M.; Bodin, L.; Davis, A.; Edler, L.; Gundert‐Remy, U.; Sand, S.; Slob, W.; Bottex, B.; Abrahantes, J. C.; Marques, D. C.; Kass, G.; Schlatter, J. R. Update: use of the benchmark dose approach in risk assessment, EFSA Journal, Volume 15 (2017) no. 1 | DOI

[8] Ewald, J.; Soufan, O.; Xia, J.; Basu, N. FastBMD: an online tool for rapid benchmark dose–response analysis of transcriptomics data, Bioinformatics, Volume 37 (2020) no. 7, pp. 1035-1036 | DOI

[9] Ewald, J. D.; Basu, N.; Crump, D.; Boulanger, E.; Head, J. Characterizing Variability and Uncertainty Associated with Transcriptomic Dose–Response Modeling, Environmental Science & Technology, Volume 56 (2022) no. 22, pp. 15960-15968 | DOI

[10] Gündel, U.; Kalkhof, S.; Zitzkat, D.; von Bergen, M.; Altenburger, R.; Küster, E. Concentration–response concept in ecotoxicoproteomics: Effects of different phenanthrene concentrations to the zebrafish (Danio rerio) embryo proteome, Ecotoxicology and Environmental Safety, Volume 76 (2012), pp. 11-22 | DOI

[11] Gust, K. A.; Lotufo, G. R.; Barker, N. D.; Ji, Q.; May, L. K. Mode of action evaluation for reduced reproduction in Daphnia pulex exposed to the insensitive munition, 1-methyl-3-nitro-1-nitroguanidine (MeNQ), Ecotoxicology, Volume 30 (2021) no. 6, pp. 1203-1215 | DOI

[12] Ji, C.; Weissmann, A.; Shao, K. A computational system for Bayesian benchmark dose estimation of genomic data in BBMD, Environment International, Volume 161 (2022) | DOI

[13] Larras, F.; Billoir, E.; Baillard, V.; Siberchicot, A.; Scholz, S.; Wubet, T.; Tarkka, M.; Schmitt-Jansen, M.; Delignette-Muller, M.-L. DRomics: A Turnkey Tool to Support the Use of the Dose–Response Framework for Omics Data in Ecological Risk Assessment, Environmental Science & Technology, Volume 52 (2018) no. 24, pp. 14461-14468 | DOI

[14] Larras, F.; Billoir, E.; Scholz, S.; Tarkka, M.; Wubet, T.; Delignette-Muller, M.-L.; Schmitt-Jansen, M. A multi-omics concentration-response framework uncovers novel understanding of triclosan effects in the chlorophyte Scenedesmus vacuolatus, Journal of Hazardous Materials, Volume 397 (2020) | DOI

[15] Larras, F.; Billoir, E.; Lips, S.; Schreiber, S.; Veber, P.; Delignette-Muller, M.; Schmitt-Jansen, M. Meta-transcriptomics reveals stress adaptation processes in microbial communities differing in exposure history, SFE2-GfÖ-EEF joint meeting, International conference on ecological sciences, Nov 2022, Metz, France (2022) (

[16] Lips, S.; Larras, F.; Schmitt-Jansen, M. Community metabolomics provides insights into mechanisms of pollution-induced community tolerance of periphyton, Science of The Total Environment, Volume 824 (2022) | DOI

[17] Love, M. I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, Volume 15 (2014) no. 12 | DOI

[18] Meier, M. J.; Dodge, A. E.; Samarajeewa, A. D.; Beaudette, L. A. Soil exposed to silver nanoparticles reveals significant changes in community structure and altered microbial transcriptional profiles, Environmental Pollution, Volume 258 (2020) | DOI

[19] Moore, D. R. J.; Caux, P.-Y. Estimating low toxic effects, Environmental Toxicology and Chemistry, Volume 16 (1997) no. 4, pp. 794-801 | DOI

[20] Murat El Houdigui, S.; Adam-Guillermin, C.; Loro, G.; Arcanjo, C.; Frelon, S.; Floriani, M.; Dubourg, N.; Baudelet, E.; Audebert, S.; Camoin, L.; Armant, O. A systems biology approach reveals neuronal and muscle developmental defects after chronic exposure to ionising radiation in zebrafish, Scientific Reports, Volume 9 (2019) no. 1 | DOI

[21] National Toxicology Program NTP Research Report on National Toxicology Program Approach to Genomic, Dose-Response Modeling: Research Report 5, 2018 (

[22] Peddada, S. D.; Lobenhofer, E. K.; Li, L.; Afshari, C. A.; Weinberg, C. R.; Umbach, D. M. Gene selection and clustering for time-course and dose–response microarray experiments using order-restricted inference, Bioinformatics, Volume 19 (2003) no. 7, pp. 834-841 | DOI

[23] Phillips, J. R.; Svoboda, D. L.; Tandon, A.; Patel, S.; Sedykh, A.; Mav, D.; Kuo, B.; Yauk, C. L.; Yang, L.; Thomas, R. S.; Gift, J. S.; Davis, J. A.; Olszyk, L.; Merrick, B. A.; Paules, R. S.; Parham, F.; Saddler, T.; Shah, R. R.; Auerbach, S. S. BMDExpress 2: enhanced transcriptomic dose-response analysis workflow, Bioinformatics, Volume 35 (2018) no. 10, pp. 1780-1782 | DOI

[24] R Core Team R: A language and environment for statistical computing , R Foundation for Statistical Computing, Vienna, Austria, 2021 (

[25] Robinson, M. D.; McCarthy, D. J.; Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, Volume 26 (2009) no. 1, pp. 139-140 | DOI

[26] Ritchie, M. E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C. W.; Shi, W.; Smyth, G. K. limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, Volume 43 (2015) no. 7 | DOI

[27] Ritz, C. Toward a unified approach to dose-response modeling in ecotoxicology, Environmental Toxicology and Chemistry, Volume 29 (2010) no. 1, pp. 220-229 | DOI

[28] Rollin, M.; Coulaud, R.; Rocher, B.; Billoir, E.; Geffard, O.; Duflot, A.; Fromont, C.; Boulangé‐Lecomte, C.; Le Foll, F.; Xuereb, B. Effects of Chemical Compounds on the Activity of the N‐acetyl‐β‐D‐Glucosaminidase of the Marine Prawn, Palaemon serratus: Screening In Vitro, Environmental Toxicology and Chemistry, Volume 42 (2023) no. 4, pp. 846-858 | DOI

[29] Serra, A.; Saarimäki, L. A.; Fratello, M.; Marwah, V. S.; Greco, D. BMDx: a graphical Shiny application to perform Benchmark Dose analysis for transcriptomics data, Bioinformatics, Volume 36 (2020) no. 9, pp. 2932-2933 | DOI

[30] Smetanová, S.; Riedl, J.; Zitzkat, D.; Altenburger, R.; Busch, W. High-throughput concentration-response analysis for omics datasets, Environmental Toxicology and Chemistry, Volume 34 (2015) no. 9, pp. 2167-2180 | DOI

[31] Song, Y.; Zheng, K.; Brede, D. A.; Gomes, T.; Xie, L.; Kassaye, Y.; Salbu, B.; Tollefsen, K. E. Multiomics Point of Departure (moPOD) Modeling Supports an Adverse Outcome Pathway Network for Ionizing Radiation, Environmental Science & Technology, Volume 57 (2023) no. 8, pp. 3198-3205 | DOI

[32] Tukey, J. W.; Ciminera, J. L.; Heyse, J. F. Testing the Statistical Certainty of a Response to Increasing Doses of a Drug, Biometrics, Volume 41 (1985) no. 1 | DOI

[33] Vokuev, M. F.; Baygildiev, Т. М.; Plyushchenko, I. V.; Ikhalaynen, Y. A.; Ogorodnikov, R. L.; Solontsov, I. K.; Braun, А. V.; Savelieva, E. I.; Rуbalchenko, I. V.; Rodin, I. A. Untargeted and targeted analysis of sarin poisoning biomarkers in rat urine by liquid chromatography and tandem mass spectrometry, Analytical and Bioanalytical Chemistry, Volume 413 (2021) no. 28, pp. 6973-6985 | DOI

[34] Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data, The Innovation, Volume 2 (2021) no. 3 | DOI

[35] Yang, L.; Allen, B. C.; Thomas, R. S. BMDExpress: a software tool for the benchmark dose analyses of genomic data, BMC Genomics, Volume 8 (2007) no. 1 | DOI

[36] Zhan, J.; Wang, S.; Li, F.; Ji, C.; Wu, H. Global characterization of dose-dependent effects of cadmium in clam Ruditapes philippinarum, Environmental Pollution, Volume 273 (2021) | DOI

[37] Zhang, X.; Xia, P.; Wang, P.; Yang, J.; Baird, D. J. Omics Advances in Ecotoxicology, Environmental Science & Technology, Volume 52 (2018) no. 7, pp. 3842-3851 | DOI

Cited by Sources: