Section: Ecology
Topic: Ecology, Environmental sciences

Integrating biodiversity assessments into local conservation planning: the importance of assessing suitable data sources

10.24072/pcjournal.331 - Peer Community Journal, Volume 3 (2023), article no. e98.

Get full text PDF Peer reviewed and recommended by PCI

Strategic Environmental Assessment (SEA) of land-use planning is a fundamental tool to minimize environmental impacts of artificialization. In this context, Systematic Conservation Planning (SCP) tools based on Species Distribution Models (SDM) are frequently used for the elaboration of spatially exhaustive biodiversity diagnostics. Despite the paradigm of “garbage in - garbage out” that emphasises the importance of testing the suitability of data for SDM and priority conservation areas, the assessment of database sources remains relatively rare. In addition, the lack of practical recommendations for the use of open-access databases by SEA stakeholders remains a problem. The aim of this study is to explore the quality of data sources that can be used in SEA to assess priority conservation areas in SEA. The study used data for nine taxonomic groups (commonly used in inventories for environmental impact assessment) and three databases available to SEA stakeholders. Three local administrative entities in very different socio-ecological contexts were used to examine three main issues : (i) the suitability of local versus regional or country databases for assessing conservation priorities, (ii) differences among taxonomic groups or territories in terms of the suitability of databases, (iii) the importance of the quality of databases for the application of SDM to assess priority conservation areas. Our study provides several clear messages for potential users of open-access databases. First, the need for prudence in the interpretation of biodiversity maps. Second, the collection of individual databases at the country scale is necessary to complete local data and ensure the suitability of SDM in a local context. Third, a data driven approach can lead to the use of notably different species communities to identify priority conservation areas when compared to the community in the original database. Finally, we propose a workflow to guide SEA stakeholders through the process of data rationalization and use in conservation planning.

Published online:
DOI: 10.24072/pcjournal.331
Type: Research article
Keywords: Data-driven approach, Species Distribution Models (SDM), Strategic Environmental Assessment (SEA), Systematic Conservation Planning (SCP)
Ferraille, Thibaut 1, 2; Kerbiriou, Christian 3, 4; Bigard, Charlotte 5; Claireau, Fabien 3, 4; Thompson, John D. 1

1 CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
2 Naturalia environnement, Avignon, France
3 Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
4 Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Station de Biologie Marine, Concarneau, France
5 Agence Bretonne de la Biodiversité, Brest, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Ferraille, Thibaut and Kerbiriou, Christian and Bigard, Charlotte and Claireau, Fabien and Thompson, John D.},
     title = {Integrating biodiversity assessments into local conservation planning: the importance of assessing suitable data sources},
     journal = {Peer Community Journal},
     eid = {e98},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.331},
     language = {en},
     url = {}
AU  - Ferraille, Thibaut
AU  - Kerbiriou, Christian
AU  - Bigard, Charlotte
AU  - Claireau, Fabien
AU  - Thompson, John D.
TI  - Integrating biodiversity assessments into local conservation planning: the importance of assessing suitable data sources
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.331
LA  - en
ID  - 10_24072_pcjournal_331
ER  - 
%0 Journal Article
%A Ferraille, Thibaut
%A Kerbiriou, Christian
%A Bigard, Charlotte
%A Claireau, Fabien
%A Thompson, John D.
%T Integrating biodiversity assessments into local conservation planning: the importance of assessing suitable data sources
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.331
%G en
%F 10_24072_pcjournal_331
Ferraille, Thibaut; Kerbiriou, Christian; Bigard, Charlotte; Claireau, Fabien; Thompson, John D. Integrating biodiversity assessments into local conservation planning: the importance of assessing suitable data sources. Peer Community Journal, Volume 3 (2023), article  no. e98. doi : 10.24072/pcjournal.331.

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.ecology.100539

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Aiello‐Lammens, M. E.; Boria, R. A.; Radosavljevic, A.; Vilela, B.; Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models, Ecography, Volume 38 (2015) no. 5, pp. 541-545 | DOI

[2] Babí Almenar, J.; Bolowich, A.; Elliot, T.; Geneletti, D.; Sonnemann, G.; Rugani, B. Assessing habitat loss, fragmentation and ecological connectivity in Luxembourg to support spatial planning, Landscape and Urban Planning, Volume 189 (2019), pp. 335-351 | DOI

[3] Anderson, R. P. Real vs. artefactual absences in species distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela, Journal of Biogeography, Volume 30 (2003) no. 4, pp. 591-605 | DOI

[4] Baker, D. J.; Maclean, I. M. D.; Goodall, M.; Gaston, K. J. Correlations between spatial sampling biases and environmental niches affect species distribution models, Global Ecology and Biogeography, Volume 31 (2022) no. 6, pp. 1038-1050 | DOI

[5] Baker, D. J.; Maclean, I. M. D.; Goodall, M.; Gaston, K. J. Species distribution modelling is needed to support ecological impact assessments, Journal of Applied Ecology, Volume 58 (2020) no. 1, pp. 21-26 | DOI

[6] Baker, M.; Carter, J.; Short, M.; Jay, S. Strategic Environmental Assessment and Land Use Planning: An International Evaluation, Routledge, 2005

[7] Barber, R. A.; Ball, S. G.; Morris, R. K. A.; Gilbert, F. Target‐group backgrounds prove effective at correcting sampling bias in Maxent models, Diversity and Distributions, Volume 28 (2021) no. 1, pp. 128-141 | DOI

[8] Beck, J.; Ballesteros‐Mejia, L.; Nagel, P.; Kitching, I. J. Online solutions and the ‘Wallacean shortfall’: what does GBIF contribute to our knowledge of species' ranges?, Diversity and Distributions, Volume 19 (2013) no. 8, pp. 1043-1050 | DOI

[9] Beck, J.; Böller, M.; Erhardt, A.; Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species' geographic distributions, Ecological Informatics, Volume 19 (2014), pp. 10-15 | DOI

[10] Bezombes, L.; Kerbiriou, C.; Spiegelberger, T. Do biodiversity offsets achieve No Net Loss? An evaluation of offsets in a French department, Biological Conservation, Volume 231 (2019), pp. 24-29 | DOI

[11] Bigard, C.; Pioch, S.; Thompson, J. D. The inclusion of biodiversity in environmental impact assessment: Policy-related progress limited by gaps and semantic confusion, Journal of Environmental Management, Volume 200 (2017), pp. 35-45 | DOI

[12] Bigard, C.; Thiriet, P.; Pioch, S.; Thompson, J. D. Strategic landscape-scale planning to improve mitigation hierarchy implementation: An empirical case study in Mediterranean France, Land Use Policy, Volume 90 (2020) | DOI

[13] Boileau, J.; Calvet, C.; Pioch, S.; Moulherat, S. Ecological equivalence assessment: The potential of genetic tools, remote sensing and metapopulation models to better apply the mitigation hierarchy, Journal of Environmental Management, Volume 305 (2022) | DOI

[14] Botella, C.; Joly, A.; Bonnet, P.; Monestiez, P.; Munoz, F. A Deep Learning Approach to Species Distribution Modelling, Multimedia Tools and Applications for Environmental & Biodiversity Informatics, Springer International Publishing, Cham, 2018, pp. 169-199 | DOI

[15] Boyce, M. S.; Vernier, P. R.; Nielsen, S. E.; Schmiegelow, F. K. Evaluating resource selection functions, Ecological Modelling, Volume 157 (2002) no. 2-3, pp. 281-300 | DOI

[16] Boyd, R.; Stewart, G.; Pescott, O. Descriptive inference using large, unrepresentative nonprobability samples: An introduction for ecologists, EcoEvoXiv, 2023 | DOI

[17] Brumm, K. J.; Hanks, R. D.; Baldwin, R. F.; Peoples, B. K. Accounting for multiple dimensions of biodiversity to assess surrogate performance in a freshwater conservation prioritization, Ecological Indicators, Volume 122 (2021) | DOI

[18] Brun, P.; Thuiller, W.; Chauvier, Y.; Pellissier, L.; Wüest, R. O.; Wang, Z.; Zimmermann, N. E. Model complexity affects species distribution projections under climate change, Journal of Biogeography, Volume 47 (2019) no. 1, pp. 130-142 | DOI

[19] Bull, J. W.; Gordon, A.; Watson, J. E. M.; Maron, M. Seeking convergence on the key concepts in ‘no net loss’ policy, Journal of Applied Ecology, Volume 53 (2016) no. 6, pp. 1686-1693 | DOI

[20] Cadotte, M. W.; Tucker, C. M. Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent, Biological Conservation, Volume 225 (2018), pp. 128-133 | DOI

[21] Canbek, G. Gaining insights in datasets in the shade of “garbage in, garbage out” rationale: Feature space distribution fitting, WIREs Data Mining and Knowledge Discovery, Volume 12 (2022) no. 3 | DOI

[22] Carmona, C. P.; Tamme, R.; Pärtel, M.; de Bello, F.; Brosse, S.; Capdevila, P.; González-M., R.; González-Suárez, M.; Salguero-Gómez, R.; Vásquez-Valderrama, M.; Toussaint, A. Erosion of global functional diversity across the tree of life, Science Advances, Volume 7 (2021) no. 13 | DOI

[23] CESBIO Dynamic Habitat Indices of NDVI - Available data [WWW Document] (2022) 4.3.23)

[24] CESBIO Variables for Biodiversity – Theia [WWW Document], 2021 4.3.23)

[25] Christensen, R. ordinal: Regression Models for Ordinal Data version 2022.11-16 from CRAN, 2022

[26] Church, R. L.; Stoms, D. M.; Davis, F. W. Reserve selection as a maximal covering location problem, Biological Conservation, Volume 76 (1996) no. 2, pp. 105-112 | DOI

[27] Clare, J. D. J.; Townsend, P. A.; Anhalt‐Depies, C.; Locke, C.; Stenglein, J. L.; Frett, S.; Martin, K. J.; Singh, A.; Van Deelen, T. R.; Zuckerberg, B. Making inference with messy (citizen science) data: when are data accurate enough and how can they be improved?, Ecological Applications, Volume 29 (2019) no. 2 | DOI

[28] Costello, M. J.; Wieczorek, J. Best practice for biodiversity data management and publication, Biological Conservation, Volume 173 (2014), pp. 68-73 | DOI

[29] Domisch, S.; Friedrichs, M.; Hein, T.; Borgwardt, F.; Wetzig, A.; Jähnig, S. C.; Langhans, S. D. Spatially explicit species distribution models: A missed opportunity in conservation planning?, Diversity and Distributions, Volume 25 (2019) no. 5, pp. 758-769 | DOI

[30] Dubos, N.; Préau, C.; Lenormand, M.; Papuga, G.; Monsarrat, S.; Denelle, P.; Louarn, M. L.; Heremans, S.; May, R.; Roche, P.; Luque, S. Assessing the effect of sample bias correction in species distribution models, Ecological Indicators, Volume 145 (2022) | DOI

[31] Dupont, P.; Demerges, D.; Drouet, E.; Luquet, G. Révision systématique, taxinomique et nomenclaturale des Rhopalocera et des Zygaenidae de France métropolitaine, Conséquences sur l’acquisition et la gestion des données d’inventaire (No 19) MNHN-SPN., 2013

[32] Elvidge, C. D.; Zhizhin, M.; Ghosh, T.; Hsu, F.-C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019, Remote Sensing, Volume 13 (2021) no. 5 | DOI

[33] Essens, T.; van Langevelde, F.; Vos, R. A.; Van Swaay, C. A. M.; WallisDeVries, M. F. Ecological determinants of butterfly vulnerability across the European continent, Journal of Insect Conservation, Volume 21 (2017) no. 3, pp. 439-450 | DOI

[34] Fahrig, L. Relative Effects of Habitat Loss and Fragmentation on Population Extinction, The Journal of Wildlife Management, Volume 61 (1997) no. 3 | DOI

[35] Ferraille, T.; Kerbiriou, C.; Bigard, C.; Claireau, F.; Thompson, J. D. Integrating overall biodiversity assessments into local conservation planning: the importance of assessing pertinent data sources, Zenodo, 2023 | DOI

[36] Ferrier, S.; Pressey, R. L.; Barrett, T. W. A new predictor of the irreplaceability of areas for achieving a conservation goal, its application to real-world planning, and a research agenda for further refinement, Biological Conservation, Volume 93 (2000) no. 3, pp. 303-325 | DOI

[37] Fithian, W.; Elith, J.; Hastie, T.; Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species, Methods in Ecology and Evolution, Volume 6 (2014) no. 4, pp. 424-438 | DOI

[38] Fletcher, R. J.; Hefley, T. J.; Robertson, E. P.; Zuckerberg, B.; McCleery, R. A.; Dorazio, R. M. A practical guide for combining data to model species distributions, Ecology, Volume 100 (2019) no. 6 | DOI

[39] Fukuda, S.; De Baets, B. Data prevalence matters when assessing species' responses using data-driven species distribution models, Ecological Informatics, Volume 32 (2016), pp. 69-78 | DOI

[40] Fundingsland Tetlow, M.; Hanusch, M. Strategic environmental assessment: the state of the art, Impact Assessment and Project Appraisal, Volume 30 (2012) no. 1, pp. 15-24 | DOI

[41] Gargominy, O.; Tercerie, S.; Régnier, C.; Ramage, T.; Dupont, T.; Daszkiewicz, P.; Poncet, L. TAXREF v14, référentiel taxonomique pour la France : méthodologie, mise en oeuvre et diffusion, Rapport Patrinat. UMS PatriNat (OFB-CNRS-MNHN), Paris, France, Paris, France, 2021

[42] Gontier, M.; Balfors, B.; Mörtberg, U. Biodiversity in environmental assessment—current practice and tools for prediction, Environmental Impact Assessment Review, Volume 26 (2006) no. 3, pp. 268-286 | DOI

[43] Guillera‐Arroita, G.; Lahoz‐Monfort, J. J.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P. E.; McCarthy, M. A.; Tingley, R.; Wintle, B. A. Is my species distribution model fit for purpose? Matching data and models to applications, Global Ecology and Biogeography, Volume 24 (2015) no. 3, pp. 276-292 | DOI

[44] Guillet, F.; Le Floch, C.; Julliard, R. Séquence Eviter-Réduire-Compenser : quelle biodiversité est visée par les mesures d’évitement ?, Sciences Eaux et Territoires (2019), pp. 1-8 | DOI

[45] Guisan, A.; Thuiller, W.; Zimmermann, N. Habitat Suitability and Distribution Models: with Applications in R, Cambridge University Press, 2017

[46] Guisan, A.; Tingley, R.; Baumgartner, J. B.; Naujokaitis‐Lewis, I.; Sutcliffe, P. R.; Tulloch, A. I. T.; Regan, T. J.; Brotons, L.; McDonald‐Madden, E.; Mantyka‐Pringle, C.; Martin, T. G.; Rhodes, J. R.; Maggini, R.; Setterfield, S. A.; Elith, J.; Schwartz, M. W.; Wintle, B. A.; Broennimann, O.; Austin, M.; Ferrier, S.; Kearney, M. R.; Possingham, H. P.; Buckley, Y. M. Predicting species distributions for conservation decisions, Ecology Letters, Volume 16 (2013) no. 12, pp. 1424-1435 | DOI

[47] Hanson, J.; Schuster, R.; Morrell, N.; Strimas-Mackey, M.; Edwards, B.; Watts, M.; Arcese, P.; Bennett, J.; Possingham, H. prioritizr: Systematic Conservation Prioritization in R, 2021 (prioritizr: Systematic Conservation Prioritization in R.)

[48] Hermoso, V.; Kennard, M. J.; Linke, S. Assessing the risks and opportunities of presence‐only data for conservation planning, Journal of Biogeography, Volume 42 (2014) no. 2, pp. 218-228 | DOI

[49] Hermoso, V.; Kennard, M. J.; Linke, S. Evaluating the costs and benefits of systematic data acquisition for conservation assessments, Ecography, Volume 38 (2014) no. 3, pp. 283-292 | DOI

[50] Horváth, Z.; Ptacnik, R.; Vad, C. F.; Chase, J. M. Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance, Ecology Letters, Volume 22 (2019) no. 6, pp. 1019-1027 | DOI

[51] IGN Géoservices - Téléchargement de données [WWW Document], 2022 4.3.23)

[52] Inglada, J.; Vincent, A.; Thierion, V. Theia OSO Land Cover Map [Data set], Zenodo (2019) | DOI

[53] Iorio, É.; Dusoulier, F.; Soldati, F.; Noël, F.; Guilloton, J.-A.; Doucet, G.; Ponel, P.; Dupont, P.; Krieg-Jacquier, R.; Chemin, S.; Tillier, P.; Touroult, J. Les Arthropodes terrestres dans les études d’impact : limites actuelles et propositions pour une meilleure priseen compte des enjeux de conservation, Naturae (2022) no. 4 | DOI

[54] IPBES Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES secretariat (2019) | DOI

[55] Jetz, W.; Thomas, G. H.; Joy, J. B.; Hartmann, K.; Mooers, A. O. The global diversity of birds in space and time, Nature, Volume 491 (2012) no. 7424, pp. 444-448 | DOI

[56] Jomier, R.; Robert, S.; Dupont, P. National Scientific Validation for Data in the Information System on Nature and Landscapes (Système d'Information sur la Nature et les Paysages - SINP) , Biodiversity Information Science and Standards, Volume 2 (2018) | DOI

[57] Julliard, R.; Jiguet, F. Un suivi intégré des populations d’oiseaux communs en France, in: Alauda. Presented at the Colloque Francophone Ornithologique, Limoges, France, Limoges, France, 2002, pp. 137-147

[58] Karger, D.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.; Zimmermann, N.; Linder, H.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas, EnviDat (2021) | DOI

[59] Karger, D. N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R. W.; Zimmermann, N. E.; Linder, H. P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas, Scientific Data, Volume 4 (2017) no. 1 | DOI

[60] Kim, V.; Ralphs, T.; Guzelsoy, M.; Mahajan, A.; Reinhard, H.; Hornik, K.; Szymanski, C.; Theussl, S. lpsymphony: Symphony integer linear programming solver in R, 2023

[61] Kujala, H.; Moilanen, A.; Gordon, A. Spatial characteristics of species distributions as drivers in conservation prioritization, Methods in Ecology and Evolution, Volume 9 (2017) no. 4, pp. 1121-1132 | DOI

[62] Lagabrielle, E.; Botta, A.; Daré, W.; David, D.; Aubert, S.; Fabricius, C. Modelling with stakeholders to integrate biodiversity into land-use planning – Lessons learned in Réunion Island (Western Indian Ocean), Environmental Modelling & Software, Volume 25 (2010) no. 11, pp. 1413-1427 | DOI

[63] Lees, C.; Rutschmann, A.; Santure, A.; Beggs, J. Science-based, stakeholder-inclusive and participatory conservation planning helps reverse the decline of threatened species, Biological Conservation, Volume 260 (2021) | DOI

[64] Leroy, B.; Delsol, R.; Hugueny, B.; Meynard, C. N.; Barhoumi, C.; Barbet‐Massin, M.; Bellard, C. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance, Journal of Biogeography, Volume 45 (2018) no. 9, pp. 1994-2002 | DOI

[65] Lino, A.; Fonseca, C.; Rojas, D.; Fischer, E.; Ramos Pereira, M. J. A meta-analysis of the effects of habitat loss and fragmentation on genetic diversity in mammals, Mammalian Biology, Volume 94 (2019), pp. 69-76 | DOI

[66] Mac Nally, R.; Duncan, R. P.; Thomson, J. R.; Yen, J. D. L. Model selection using information criteria, but is the “best” model any good?, Journal of Applied Ecology, Volume 55 (2017) no. 3, pp. 1441-1444 | DOI

[67] Margules, C. R.; Pressey, R. L. Systematic conservation planning, Nature, Volume 405 (2000) no. 6783, pp. 243-253 | DOI

[68] Mariton, L.; Kerbiriou, C.; Bas, Y.; Zanda, B.; Le Viol, I. Even low light pollution levels affect the spatial distribution and timing of activity of a “light tolerant” bat species, Environmental Pollution, Volume 305 (2022) | DOI

[69] Maron, M.; Ives, C. D.; Kujala, H.; Bull, J. W.; Maseyk, F. J. F.; Bekessy, S.; Gordon, A.; Watson, J. E.; Lentini, P. E.; Gibbons, P.; Possingham, H. P.; Hobbs, R. J.; Keith, D. A.; Wintle, B. A.; Evans, M. C. Taming a Wicked Problem: Resolving Controversies in Biodiversity Offsetting, BioScience, Volume 66 (2016) no. 6, pp. 489-498 | DOI

[70] Matsuki, K.; Kuperman, V.; Van Dyke, J. A. The Random Forests statistical technique: An examination of its value for the study of reading, Scientific Studies of Reading, Volume 20 (2016) no. 1, pp. 20-33 | DOI

[71] Matutini, F.; Baudry, J.; Pain, G.; Sineau, M.; Pithon, J. How citizen science could improve species distribution models and their independent assessment, Ecology and Evolution, Volume 11 (2021) no. 7, pp. 3028-3039 | DOI

[72] Maxwell, S. L.; Fuller, R. A.; Brooks, T. M.; Watson, J. E. M. Biodiversity: The ravages of guns, nets and bulldozers, Nature, Volume 536 (2016) no. 7615, pp. 143-145 | DOI

[73] MEDDE GIS Sol Enveloppes des milieux potentiellement humides de la France métropolitaine, Notice d’accompagnement. Programme de modélisation des milieux potentiellement humides de France. Ministère d’Ecologie, du Développement Durable et de l’Energie, Groupement d’Intérêt Scientifique Sol, 2014

[74] Meyer, C.; Kreft, H.; Guralnick, R.; Jetz, W. Global priorities for an effective information basis of biodiversity distributions, Nature Communications, Volume 6 (2015) no. 1 | DOI

[75] Meyer, C. B. Does scale matter in predicting species distributions? Case study with the marbled murrelet, Ecological Applications, Volume 17 (2007) no. 5, pp. 1474-1483 | DOI

[76] Middleton-Welling, J.; Dapporto, L.; García-Barros, E.; Wiemers, M.; Nowicki, P.; Plazio, E.; Bonelli, S.; Zaccagno, M.; Šašić, M.; Liparova, J.; Schweiger, O.; Harpke, A.; Musche, M.; Settele, J.; Schmucki, R.; Shreeve, T. A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea, Scientific Data, Volume 7 (2020) no. 1 | DOI

[77] Morelli, F.; Benedetti, Y.; Callaghan, C. T. Ecological specialization and population trends in European breeding birds, Global Ecology and Conservation, Volume 22 (2020) | DOI

[78] Moussus, J.-P.; Lorin, T.; Cooper, A. Guide pratique des papillons de France, Delachaux et Niestlé, France, 2019

[79] Olden, J. D.; Rooney, T. P. On defining and quantifying biotic homogenization, Global Ecology and Biogeography, Volume 15 (2006) no. 2, pp. 113-120 | DOI

[80] Phalan, B.; Hayes, G.; Brooks, S.; Marsh, D.; Howard, P.; Costelloe, B.; Vira, B.; Kowalska, A.; Whitaker, S. Avoiding impacts on biodiversity through strengthening the first stage of the mitigation hierarchy, Oryx, Volume 52 (2017) no. 2, pp. 316-324 | DOI

[81] Phillips, S. J.; Dudík, M.; Elith, J.; Graham, C. H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data, Ecological Applications, Volume 19 (2009) no. 1, pp. 181-197 | DOI

[82] Ponder, W. F.; Carter, G. A.; Flemons, P.; Chapman, R. R. Evaluation of Museum Collection Data for Use in Biodiversity Assessment, Conservation Biology, Volume 15 (2001) no. 3, pp. 648-657 | DOI

[83] Pope, J.; Bond, A.; Morrison-Saunders, A.; Retief, F. Advancing the theory and practice of impact assessment: Setting the research agenda, Environmental Impact Assessment Review, Volume 41 (2013), pp. 1-9 | DOI

[84] PRESSEY, R. L.; BOTTRILL, M. C. Opportunism, Threats, and the Evolution of Systematic Conservation Planning, Conservation Biology, Volume 22 (2008) no. 5, pp. 1340-1345 | DOI

[85] Quétier, F.; Regnery, B.; Levrel, H. No net loss of biodiversity or paper offsets? A critical review of the French no net loss policy, Environmental Science & Policy, Volume 38 (2014), pp. 120-131 | DOI

[86] Rondinini, C.; Wilson, K. A.; Boitani, L.; Grantham, H.; Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning, Ecology Letters, Volume 9 (2006) no. 10, pp. 1136-1145 | DOI

[87] Sanders, H.; Saxe, J. Garbage in, garbage out: how purportedly great ML models can be screwed up by bad data, Blackhat, Las Vegas, USA, 2017, p. 6

[88] Schtickzelle, N. Biodiversity databases are ever more numerous, but can they be used reliably for Species Distribution Modelling?, Peer Community in Ecology (2023) | DOI

[89] Schoener, T. W. The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna, Ecology, Volume 49 (1968) no. 4, pp. 704-726 | DOI

[90] Sheard, C.; Neate-Clegg, M. H. C.; Alioravainen, N.; Jones, S. E. I.; Vincent, C.; MacGregor, H. E. A.; Bregman, T. P.; Claramunt, S.; Tobias, J. A. Ecological drivers of global gradients in avian dispersal inferred from wing morphology, Nature Communications, Volume 11 (2020) no. 1 | DOI

[91] Shirey, V.; Belitz, M. W.; Barve, V.; Guralnick, R. A complete inventory of North American butterfly occurrence data: narrowing data gaps, but increasing bias, Ecography, Volume 44 (2021) no. 4, pp. 537-547 | DOI

[92] Sofaer, H. R.; Jarnevich, C. S.; Pearse, I. S.; Smyth, R. L.; Auer, S.; Cook, G. L.; Edwards, T. C.; Guala, G. F.; Howard, T. G.; Morisette, J. T.; Hamilton, H. Development and Delivery of Species Distribution Models to Inform Decision-Making, BioScience, Volume 69 (2019) no. 7, pp. 544-557 | DOI

[93] Sousa‐Baena, M. S.; Garcia, L. C.; Peterson, A. T. Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory, Diversity and Distributions, Volume 20 (2013) no. 4, pp. 369-381 | DOI

[94] Srisa-An, C. Guideline of Collinearity - Avoidable Regression Models on Time-series Analysis, 2021 2nd International Conference on Big Data Analytics and Practices (IBDAP). Presented at the 2021 2nd International Conference on Big Data Analytics and Practices (IBDAP, Bangkok, Thailand, 2021, pp. 28-32 | DOI

[95] Stekhoven, D. J.; Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data, Bioinformatics, Volume 28 (2011) no. 1, pp. 112-118 | DOI

[96] Støa, B.; Halvorsen, R.; Stokland, J. N.; Gusarov, V. I. How much is enough? Influence of number of presence observations on the performance of species distribution models, Sommerfeltia, Volume 39 (2019) no. 1, pp. 1-28 | DOI

[97] Storchová, L.; Hořák, D. Life‐history characteristics of European birds, Global Ecology and Biogeography, Volume 27 (2018) no. 4, pp. 400-406 | DOI

[98] Tarabon, S.; Bergès, L.; Dutoit, T.; Isselin-Nondedeu, F. Environmental impact assessment of development projects improved by merging species distribution and habitat connectivity modelling, Journal of Environmental Management, Volume 241 (2019), pp. 439-449 | DOI

[99] Telenius, A. Biodiversity information goes public: GBIF at your service, Nordic Journal of Botany, Volume 29 (2011) no. 3, pp. 378-381 | DOI

[100] Tittensor, D. P.; Walpole, M.; Hill, S. L. L.; Boyce, D. G.; Britten, G. L.; Burgess, N. D.; Butchart, S. H. M.; Leadley, P. W.; Regan, E. C.; Alkemade, R.; Baumung, R.; Bellard, C.; Bouwman, L.; Bowles-Newark, N. J.; Chenery, A. M.; Cheung, W. W. L.; Christensen, V.; Cooper, H. D.; Crowther, A. R.; Dixon, M. J. R.; Galli, A.; Gaveau, V.; Gregory, R. D.; Gutierrez, N. L.; Hirsch, T. L.; Höft, R.; Januchowski-Hartley, S. R.; Karmann, M.; Krug, C. B.; Leverington, F. J.; Loh, J.; Lojenga, R. K.; Malsch, K.; Marques, A.; Morgan, D. H. W.; Mumby, P. J.; Newbold, T.; Noonan-Mooney, K.; Pagad, S. N.; Parks, B. C.; Pereira, H. M.; Robertson, T.; Rondinini, C.; Santini, L.; Scharlemann, J. P. W.; Schindler, S.; Sumaila, U. R.; Teh, L. S.; van Kolck, J.; Visconti, P.; Ye, Y. A mid-term analysis of progress toward international biodiversity targets, Science, Volume 346 (2014) no. 6206, pp. 241-244 | DOI

[101] Toussaint, A.; Brosse, S.; Bueno, C. G.; Pärtel, M.; Tamme, R.; Carmona, C. P. Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world, Nature Communications, Volume 12 (2021) no. 1 | DOI

[102] Troudet, J.; Grandcolas, P.; Blin, A.; Vignes-Lebbe, R.; Legendre, F. Taxonomic bias in biodiversity data and societal preferences, Scientific Reports, Volume 7 (2017) no. 1 | DOI

[103] Tulloch, A. I.; Gordon, A.; Runge, C. A.; Rhodes, J. R. Integrating spatially realistic infrastructure impacts into conservation planning to inform strategic environmental assessment, Conservation Letters, Volume 12 (2019) no. 4 | DOI

[104] Tulloch, A. I.; Sutcliffe, P.; Naujokaitis-Lewis, I.; Tingley, R.; Brotons, L.; Ferraz, K. M. P.; Possingham, H.; Guisan, A.; Rhodes, J. R. Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes, Biological Conservation, Volume 199 (2016), pp. 157-171 | DOI

[105] Valavi, R.; Elith, J.; Lahoz‐Monfort, J. J.; Guillera‐Arroita, G. Modelling species presence‐only data with random forests, Ecography, Volume 44 (2021) no. 12, pp. 1731-1742 | DOI

[106] Valavi, R.; Guillera‐Arroita, G.; Lahoz‐Monfort, J. J.; Elith, J. Predictive performance of presence‐only species distribution models: a benchmark study with reproducible code, Ecological Monographs, Volume 92 (2021) no. 1 | DOI

[107] Velazco, S. J. E.; Ribeiro, B. R.; Laureto, L. M. O.; De Marco Júnior, P. Overprediction of species distribution models in conservation planning: A still neglected issue with strong effects, Biological Conservation, Volume 252 (2020) | DOI

[108] Warren, D.; Dinnage, R. ENMTools: Analysis of Niche Evolution using Niche and Distribution Models, 2022

[109] Warren, D. L.; Glor, R. E.; Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution, Evolution, Volume 62 (2008) no. 11, pp. 2868-2883 | DOI

[110] Whitehead, A. L.; Kujala, H.; Wintle, B. A. Dealing with Cumulative Biodiversity Impacts in Strategic Environmental Assessment: A New Frontier for Conservation Planning, Conservation Letters, Volume 10 (2016) no. 2, pp. 195-204 | DOI

[111] Wiemers, M.; Chazot, N.; Wheat, C.; Schweiger, O.; Wahlberg, N. A complete time-calibrated multi-gene phylogeny of the European butterflies, ZooKeys, Volume 938 (2020), pp. 97-124 | DOI

[112] Wiemers, M.; Chazot, N.; Wheat, C.; Schweiger, O.; Wahlberg, N. A complete time-calibrated multi-gene phylogeny of the European butterflies data [Data set], Zenodo | DOI

[113] Wilman, H.; Belmaker, J.; Simpson, J.; de la Rosa, C.; Rivadeneira, M. M.; Jetz, W. EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals, Ecology, Volume 95 (2014) no. 7, p. 2027-2027 | DOI

[114] Witté, I.; Touroult, J. Muséum National d’Histoire Naturel (MNHN) - Service du Patrimoine Naturel (SPN), France, Muséum National d’Histoire Naturel (MNHN) - Service du Patrimoine Naturel (SPN), France

[115] Zambrano, J.; Garzon-Lopez, C. X.; Yeager, L.; Fortunel, C.; Cordeiro, N. J.; Beckman, N. G. The effects of habitat loss and fragmentation on plant functional traits and functional diversity: what do we know so far?, Oecologia, Volume 191 (2019) no. 3, pp. 505-518 | DOI

[116] Zuckerberg, B.; Huettmann, F.; Frair, J. Proper Data Management as a Scientific Foundation for Reliable Species Distribution Modeling, Predictive Species and Habitat Modeling in Landscape Ecology, Springer New York, New York, NY, 2010, pp. 45-70 | DOI

[117] Zurell, D.; Franklin, J.; König, C.; Bouchet, P. J.; Dormann, C. F.; Elith, J.; Fandos, G.; Feng, X.; Guillera‐Arroita, G.; Guisan, A.; Lahoz‐Monfort, J. J.; Leitão, P. J.; Park, D. S.; Peterson, A. T.; Rapacciuolo, G.; Schmatz, D. R.; Schröder, B.; Serra‐Diaz, J. M.; Thuiller, W.; Yates, K. L.; Zimmermann, N. E.; Merow, C. A standard protocol for reporting species distribution models, Ecography, Volume 43 (2020) no. 9, pp. 1261-1277 | DOI

Cited by Sources: