Section: Evolutionary Biology
Topic: Evolution, Genetics/Genomics, Population biology

Phenotypic stasis with genetic divergence

10.24072/pcjournal.349 - Peer Community Journal, Volume 3 (2023), article no. e119.

Get full text PDF Peer reviewed and recommended by PCI

Whether or not genetic divergence in the short-term of tens to hundreds of generations is compatible with phenotypic stasis remains a relatively unexplored problem. We evolved predominantly outcrossing, genetically diverse populations of the nematode Caenorhabditis elegans under a constant and homogeneous environment for 240 generations and followed individual locomotion behavior. Although founders of lab populations show highly diverse locomotion behavior, during lab evolution, the component traits of locomotion behavior – defined as the transition rates in activity and direction – did not show divergence from the ancestral population. In contrast, transition rates’ genetic (co)variance structure showed a marked divergence from the ancestral state and differentiation among replicate populations during the final 100 generations and after most adaptation had been achieved. We observe that genetic differentiation is a transient pattern during the loss of genetic variance along phenotypic dimensions under drift during the last 100 generations of lab evolution. These results suggest that short-term stasis of locomotion behavior is maintained because of stabilizing selection, while the genetic structuring of component traits is contingent upon drift history.

Published online:
DOI: 10.24072/pcjournal.349
Type: Research article
Keywords: phenotypic stasis, G-matrix, selection surface, genetic drift, locomotion behavior, transition rates, Caenorhabditis elegans, experimental evolution, phenotypic stasis, G-matrix, selection surface, genetic drift, locomotion behavior, transition rates, Caenorhabditis elegans, experimental evolution, phenotypic stasis, G-matrix, selection surface, genetic drift, locomotion behavior, transition rates, Caenorhabditis elegans, experimental evolution
Mallard, François 1; Noble, Luke 1; Guzella, Thiago 1; Afonso, Bruno 1; Baer, Charles F. 2; Teotónio, Henrique 1

1 Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
2 Department of Biology, University of Florida Genetics Institute, University of Florida, Gainsville, Florida 32611, U.S.A.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Mallard, Fran\c{c}ois and Noble, Luke and Guzella, Thiago and Afonso, Bruno and Baer, Charles F. and Teot\'onio, Henrique},
     title = {Phenotypic stasis with genetic divergence},
     journal = {Peer Community Journal},
     eid = {e119},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.349},
     language = {en},
     url = {}
AU  - Mallard, François
AU  - Noble, Luke
AU  - Guzella, Thiago
AU  - Afonso, Bruno
AU  - Baer, Charles F.
AU  - Teotónio, Henrique
TI  - Phenotypic stasis with genetic divergence
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.349
LA  - en
ID  - 10_24072_pcjournal_349
ER  - 
%0 Journal Article
%A Mallard, François
%A Noble, Luke
%A Guzella, Thiago
%A Afonso, Bruno
%A Baer, Charles F.
%A Teotónio, Henrique
%T Phenotypic stasis with genetic divergence
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.349
%G en
%F 10_24072_pcjournal_349
Mallard, François; Noble, Luke; Guzella, Thiago; Afonso, Bruno; Baer, Charles F.; Teotónio, Henrique. Phenotypic stasis with genetic divergence. Peer Community Journal, Volume 3 (2023), article  no. e119. doi : 10.24072/pcjournal.349.

Peer reviewed and recommended by PCI : 10.24072/pci.evolbiol.100627

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Aguirre, J. D.; Hine, E.; McGuigan, K.; Blows, M. W. Comparing G: multivariate analysis of genetic variation in multiple populations, Heredity, Volume 112 (2013) no. 1, pp. 21-29 | DOI

[2] Arnold, S. J.; Pfrender, M. E.; Jones, A. G. he adaptive landscape as a conceptual bridge between micro- and macroevolution, Genetica, Volume 112/113 (2001), pp. 9-32 | DOI

[3] Arnold, S. J. Phenotypic Evolution: The Ongoing Synthesis, The American Naturalist, Volume 183 (2014) no. 6, pp. 729-746 | DOI

[4] Austin, P. C.; Hux, J. E. A brief note on overlapping confidence intervals, Journal of Vascular Surgery, Volume 36 (2002) no. 1, pp. 194-195 | DOI

[5] Baer, C. F.; Shaw, F.; Steding, C.; Baumgartner, M.; Hawkins, A.; Houppert, A.; Mason, N.; Reed, M.; Simonelic, K.; Woodard, W.; Lynch, M. Comparative evolutionary genetics of spontaneous mutations affecting fitness in rhabditid nematodes, Proceedings of the National Academy of Sciences, Volume 102 (2005) no. 16, pp. 5785-5790 | DOI

[6] Barr, M. M.; García, L. R.; Portman, D. S. Sexual Dimorphism and Sex Differences in Caenorhabditis elegans Neuronal Development and Behavior, Genetics, Volume 208 (2018) no. 3, pp. 909-935 | DOI

[7] Barton, N. H. Pleiotropic models of quantitative variation., Genetics, Volume 124 (1990) no. 3, pp. 773-782 | DOI

[8] Barton, N.; Etheridge, A.; Véber, A. The infinitesimal model: Definition, derivation, and implications, Theoretical Population Biology, Volume 118 (2017), pp. 50-73 | DOI

[9] Barton, N. H.; Turelli, M. Adaptive landscapes, genetic distance and the evolution of quantitative characters, Genetical Research, Volume 49 (1987) no. 2, pp. 157-173 | DOI

[10] Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17., 2020

[11] Bernstein, M. R.; Zdraljevic, S.; Andersen, E. C.; Rockman, M. V. Tightly linked antagonistic-effect loci underlie polygenic phenotypic variation in C. elegans, Evolution Letters, Volume 3 (2019) no. 5, pp. 462-473 | DOI

[12] Biquet, J.; Bonamour, S.; de Villemereuil, P.; de Franceschi, C.; Teplitsky, C. Phenotypic plasticity drives phenological changes in a Mediterranean blue tit population, Journal of Evolutionary Biology, Volume 35 (2021) no. 2, pp. 347-359 | DOI

[13] Bladt, M.; Sørensen, M. Statistical Inference for Discretely Observed Markov Jump Processes, Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 67 (2005) no. 3, pp. 395-410 | DOI

[14] Bohren, B. B.; Hill, W. G.; Robertson, A. Some observations on asymmetrical correlated responses to selection, Genetical Research, Volume 7 (1966) no. 1, pp. 44-57 | DOI

[15] Burger, R. The Mathematical Theory of Selection, Recombination, and Mutation, Wiley Series in Mathematical and Computational Biology., John Wiley & Sons, Ltd., New York, 2000

[16] Carvalho, S.; Chelo, I. M.; Goy, C.; Teotónio, H. The role of hermaphrodites in the experimental evolution of increased outcrossing rates in Caenorhabditis elegans, BMC Evolutionary Biology, Volume 14 (2014) no. 1 | DOI

[17] Carvalho, S.; Phillips, P. C.; Teotónio, H. Hermaphrodite life history and the maintenance of partial selfing in experimental populations of Caenorhabditis elegans, BMC Evolutionary Biology, Volume 14 (2014) no. 1 | DOI

[18] Charlesworth, B.; Lande, R.; Slatkin, M. A Neo-Darwinian Commentary on Macroevolution, Evolution, Volume 36 (1982) no. 3 | DOI

[19] Chebib, J.; Guillaume, F. What affects the predictability of evolutionary constraints using a G-matrix? The relative effects of modular pleiotropy and mutational correlation, Evolution, Volume 71 (2017) no. 10, pp. 2298-2312 | DOI

[20] Chelo, I. M.; Nédli, J.; Gordo, I.; Teotónio, H. An experimental test on the probability of extinction of new genetic variants, Nature Communications, Volume 4 (2013) no. 1 | DOI

[21] Chelo, I. M.; Teotónio, H. The opportunity for balancing selection in experimental populations of Caenorhabditis elegans, Evolution, Volume 67 (2012) no. 1, pp. 142-156 | DOI

[22] Chen, T.; Guestrin, C. XGBoost, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016) | DOI

[23] Cohan, F. M. Can Uniform Selection Retard Random Genetic Divergence Between Isolated Conspecific Populations?, Evolution, Volume 38 (1984) no. 3 | DOI

[24] Cook, D. E.; Zdraljevic, S.; Roberts, J. P.; Andersen, E. C. CeNDR, the Caenorhabditis elegans natural diversity resource, Nucleic Acids Research, Volume 45 (2016) no. D1 | DOI

[25] Czorlich, Y.; Aykanat, T.; Erkinaro, J.; Orell, P.; Primmer, C. R. Rapid evolution in salmon life history induced by direct and indirect effects of fishing, Science, Volume 376 (2022) no. 6591, pp. 420-423 | DOI

[26] de Villemereuil, P.; Charmantier, A.; Arlt, D.; Bize, P.; Brekke, P.; Brouwer, L.; Cockburn, A.; Côté, S. D.; Dobson, F. S.; Evans, S. R.; Festa-Bianchet, M.; Gamelon, M.; Hamel, S.; Hegelbach, J.; Jerstad, K.; Kempenaers, B.; Kruuk, L. E. B.; Kumpula, J.; Kvalnes, T.; McAdam, A. G.; McFarlane, S. E.; Morrissey, M. B.; Pärt, T.; Pemberton, J. M.; Qvarnström, A.; Røstad, O. W.; Schroeder, J.; Senar, J. C.; Sheldon, B. C.; van de Pol, M.; Visser, M. E.; Wheelwright, N. T.; Tufto, J.; Chevin, L.-M. Fluctuating optimum and temporally variable selection on breeding date in birds and mammals, Proceedings of the National Academy of Sciences, Volume 117 (2020) no. 50, pp. 31969-31978 | DOI

[27] Dey, S.; Proulx, S. R.; Teotónio, H. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects, PLOS Biology, Volume 14 (2016) no. 2 | DOI

[28] Doroszuk, A.; Wojewodzic, M. W.; Gort, G.; Kammenga, J. E. Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population, The American Naturalist, Volume 171 (2008) no. 3, pp. 291-304 | DOI

[29] Estes, S.; Arnold, S. J. Resolving the Paradox of Stasis: Models with Stabilizing Selection Explain Evolutionary Divergence on All Timescales, The American Naturalist, Volume 169 (2007) no. 2, pp. 227-244 | DOI

[30] Farhadifar, R.; Baer, C. F.; Valfort, A.-C.; Andersen, E. C.; Müller-Reichert, T.; Delattre, M.; Needleman, D. J. Scaling, Selection, and Evolutionary Dynamics of the Mitotic Spindle, Current Biology, Volume 25 (2015) no. 6, pp. 732-740 | DOI

[31] Flavell, S. W.; Raizen, D. M.; You, Y.-J. Behavioral States, Genetics, Volume 216 (2020) no. 2, pp. 315-332 | DOI

[32] Fowler, K.; Whitlock, M. C. The Distribution of Phenotypic Variance with Inbreeding, Evolution, Volume 53 (1999) no. 4 | DOI

[33] Gingerich, P. D. Rates of Evolution, Cambridge University Press, 2019 | DOI

[34] Gray, J. M.; Hill, J. J.; Bargmann, C. I. A circuit for navigation in Caenorhabditis elegans, Proceedings of the National Academy of Sciences, Volume 102 (2005) no. 9, pp. 3184-3191 | DOI

[35] Gromko, M. H. Unpredictability of Correlated Response to Selection: Pleiotropy and Sampling Interact, Evolution, Volume 49 (1995) no. 4 | DOI

[36] Guillaume, F. Phenotypic stasis despite genetic divergence and differentiation in *Caenorhabditis elegans*., Peer Community in Evolutionary Biology (2023) | DOI

[37] Guzella, T. S.; Dey, S.; Chelo, I. M.; Pino-Querido, A.; Pereira, V. F.; Proulx, S. R.; Teotónio, H. Slower environmental change hinders adaptation from standing genetic variation, PLOS Genetics, Volume 14 (2018) no. 11 | DOI

[38] Hadfield, J. D. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package, Journal of Statistical Software, Volume 33 (2010) no. 2 | DOI

[39] Haller, B. C.; Hendry, A. P. Solving the paradox of stasis: squashed stabilizing selection and the limits of detection, Evolution, Volume 68 (2013) no. 2, pp. 483-500 | DOI

[40] Hansen, T. F.; Martins, E. P. Translating Between Microevolutionary Process and Macroevolutionary Patterns: The Correlation Structure of Interspecific Data, Evolution, Volume 50 (1996) no. 4 | DOI

[41] Hansen, T. F.; Wagner, G. P. Modeling Genetic Architecture: A Multilinear Theory of Gene Interaction, Theoretical Population Biology, Volume 59 (2001) no. 1, pp. 61-86 | DOI

[42] Hill, W. G. Rates of change in quantitative traits from fixation of new mutations., Proceedings of the National Academy of Sciences, Volume 79 (1982) no. 1, pp. 142-145 | DOI

[43] Hine, E.; Chenoweth, S. F.; Rundle, H. D.; Blows, M. W. Characterizing the evolution of genetic variance using genetic covariance tensors, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 364 (2009) no. 1523, pp. 1567-1578 | DOI

[44] Houle, D.; Bolstad, G. H.; van der Linde, K.; Hansen, T. F. Mutation predicts 40 million years of fly wing evolution, Nature, Volume 548 (2017) no. 7668, pp. 447-450 | DOI

[45] Houle, D.; Morikawa, B.; Lynch, M. Comparing Mutational Variabilities, Genetics, Volume 143 (1996) no. 3, pp. 1467-1483 | DOI

[46] Jackson, C. H. Multi-State Models for Panel Data: The msm Package for R, Journal of Statistical Software, Volume 38 (2011) no. 8 | DOI

[47] Johnson, T.; Barton, N. Theoretical models of selection and mutation on quantitative traits, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 360 (2005) no. 1459, pp. 1411-1425 | DOI

[48] Kalbfleisch, J. D.; Lawless, J. F. The Analysis of Panel Data under a Markov Assumption, Journal of the American Statistical Association, Volume 80 (1985) no. 392, pp. 863-871 | DOI

[49] Kearsey, M. J.; Pooni, H. S. The Genetical Analysis of Quantitative Traits, Springer US, Boston, MA, 1996 | DOI

[50] Kruuk, L. E. B.; Slate, J.; Pemberton, J. M.; Brotherstone, S.; Guinness, F.; Clutton-Brock, T. Antler size in red deer: heritability and selection but no evolution, Evolution, Volume 56 (2002) no. 8 | DOI

[51] Lande, R. Natural Selection and Random Genetic Drift in Phenotypic Evolution, Evolution, Volume 30 (1976) no. 2 | DOI

[52] Lande, R. Quantitative Genetic Analysis of Multivariate Evolution, Applied to Brain: Body Size Allometry, Evolution, Volume 33 (1979) no. 1 | DOI

[53] Lande, R. The genetic covariance between characters maintained by pleiotropic mutations, Genetics, Volume 94 (1980) no. 1, pp. 203-215 | DOI

[54] Lande, R. The dynamics of peak shifts and the pattern of morphological evolution, Paleobiology, Volume 12 (1986) no. 4, pp. 343-354 | DOI

[55] Lande, R.; Arnold, S. J. The Measurement of Selection on Correlated Characters, Evolution, Volume 37 (1983) no. 6 | DOI

[56] Lee, D.; Zdraljevic, S.; Stevens, L.; Wang, Y.; Tanny, R. E.; Crombie, T. A.; Cook, D. E.; Webster, A. K.; Chirakar, R.; Baugh, L. R.; Sterken, M. G.; Braendle, C.; Félix, M.-A.; Rockman, M. V.; Andersen, E. C. Balancing selection maintains hyper-divergent haplotypes in Caenorhabditis elegans, Nature Ecology & Evolution, Volume 5 (2021) no. 6, pp. 794-807 | DOI

[57] Lipton, J.; Kleemann, G.; Ghosh, R.; Lints, R.; Emmons, S. W. Mate Searching in Caenorhabditis elegans: A Genetic Model for Sex Drive in a Simple Invertebrate, The Journal of Neuroscience, Volume 24 (2004) no. 34, pp. 7427-7434 | DOI

[58] Lynch, M.; Hill, W. G. Phenotypic Evolution by Neutral Mutation, Evolution, Volume 40 (1986) no. 5 | DOI

[59] Lynch, M.; Walsh, B. Genetics and Analysis of Quantitative Traits, Sinauer Associates, Inc., Sunderland, 1998

[60] Mallard, F.; Afonso, B.; Teotónio, H. Selection and the direction of phenotypic evolution, eLife, Volume 12 (2023) | DOI

[61] Mallard, F.; Noble, L.; Baer, C. F.; Teotónio, H. Variation in mutational (co)variances, G3 Genes|Genomes|Genetics, Volume 13 (2022) no. 2 | DOI

[62] Teotónio, H.; Mallard, F. Phenotypic stasis despite genetic divergence and differentiation in Caenorhabditis elegans. [Data set], Zenodo, 2023 | DOI

[63] Matuszewski, S.; Hermisson, J.; Kopp, M. Catch Me if You Can: Adaptation from Standing Genetic Variation to a Moving Phenotypic Optimum, Genetics, Volume 200 (2015) no. 4, pp. 1255-1274 | DOI

[64] Merilä, J.; Sheldon, B.; Kruuk, L. Genetica, 112/113 (2001), pp. 199-222 | DOI

[65] Morrissey, M. B. Evolutionary quantitative genetics of nonlinear developmental systems, Evolution, Volume 69 (2015) no. 8, pp. 2050-2066 | DOI

[66] Morrissey, M. B.; Bonnet, T. Analogues of the fundamental and secondary theorems of selection, assuming a log-normal distribution of expected fitness, Journal of Heredity, Volume 110 (2019) no. 4, pp. 396-402 | DOI

[67] Morrissey, M. B.; Hadfield, J. D. Directional selection in temporally replicated studies is remarkably consistent, Evolution, Volume 66 (2011) no. 2, pp. 435-442 | DOI

[68] Noble, D. W. A.; Radersma, R.; Uller, T. Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation, Proceedings of the National Academy of Sciences, Volume 116 (2019) no. 27, pp. 13452-13461 | DOI

[69] Noble, L. M.; Chelo, I.; Guzella, T.; Afonso, B.; Riccardi, D. D.; Ammerman, P.; Dayarian, A.; Carvalho, S.; Crist, A.; Pino-Querido, A.; Shraiman, B.; Rockman, M. V.; Teotónio, H. Polygenicity and Epistasis Underlie Fitness-Proximal Traits in the Caenorhabditis elegans Multiparental Experimental Evolution (CeMEE) Panel, Genetics, Volume 207 (2017) no. 4, pp. 1663-1685 | DOI

[70] Noble, L. M.; Rockman, M. V.; Teotónio, H. Gene-level quantitative trait mapping in Caenorhabditis elegans, G3 Genes|Genomes|Genetics, Volume 11 (2021) no. 2 | DOI

[71] Phillips, P. C.; Whitlock, M. C.; Fowler, K. Inbreeding Changes the Shape of the Genetic Covariance Matrix in Drosophila melanogaster, Genetics, Volume 158 (2001) no. 3, pp. 1137-1145 | DOI

[72] Phillips, P. C.; Arnold, S. J. Visualizing Multivariate Selection, Evolution, Volume 43 (1989) no. 6 | DOI

[73] Poullet, N.; Vielle, A.; Gimond, C.; Carvalho, S.; Teotónio, H.; Braendle, C. Complex heterochrony underlies the evolution of Caenorhabditis elegans hermaphrodite sex allocation, Evolution, Volume 70 (2016) no. 10, pp. 2357-2369 | DOI

[74] Pujol, B.; Blanchet, S.; Charmantier, A.; Danchin, E.; Facon, B.; Marrot, P.; Roux, F.; Scotti, I.; Teplitsky, C.; Thomson, C. E.; Winney, I. The Missing Response to Selection in the Wild, Trends in Ecology & Evolution, Volume 33 (2018) no. 5, pp. 337-346 | DOI

[75] Riska, B. Composite Traits, Selection Response, and Evolution, Evolution, Volume 43 (1989) no. 6 | DOI

[76] Robertson, A. Inbreeding in artificial selection programmes, Genetical Research, Volume 2 (1961) no. 2, pp. 189-194 | DOI

[77] Santiago, E.; Caballero, A. Effective Size and Polymorphism of Linked Neutral Loci in Populations Under Directional Selection, Genetics, Volume 149 (1998) no. 4, pp. 2105-2117 | DOI

[78] Schluter, D. Adaptive Radiation Along Genetic Lines of Least Resistance, Evolution, Volume 50 (1996) no. 5 | DOI

[79] Scrucca, L.; Fop, M.; Murphy, T.; Raftery, A. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal , Volume 8, 2016, pp. 205-233

[80] Simons, Y. B.; Bullaughey, K.; Hudson, R. R.; Sella, G. A population genetic interpretation of GWAS findings for human quantitative traits, PLOS Biology, Volume 16 (2018) no. 3 | DOI

[81] Simpson, G. G. Tempo and Mode in Evolution, Columbia University Press, New York, 1944

[82] Simões, P.; Fragata, I.; Santos, J.; Santos, M. A.; Santos, M.; Rose, M. R.; Matos, M. How phenotypic convergence arises in experimental evolution, Evolution, Volume 73 (2019) no. 9, pp. 1839-1849 | DOI

[83] Stan Development Team RStan: the R interface to Stan. R package version 2.18.2., 2018

[84] Stiernagle, T. Maintenance of C. elegans, Oxford University PressOxford, 1999, pp. 51-68 | DOI

[85] Stinchcombe, J. R.; Simonsen, A. K.; Blows, M. W. Estimating uncertainty in multivariate responses to selection, Evolution, Volume 68 (2013) no. 4, pp. 1188-1196 | DOI

[86] Stroud, J. T.; Moore, M. P.; Langerhans, R. B.; Losos, J. B. Fluctuating selection maintains distinct species phenotypes in an ecological community in the wild, Proceedings of the National Academy of Sciences, Volume 120 (2023) no. 42 | DOI

[87] Stroud, J. T.; Moore, M. P.; Langerhans, R. B.; Losos, J. B. Fluctuating selection maintains distinct species phenotypes in an ecological community in the wild, Proceedings of the National Academy of Sciences, Volume 120 (2023) no. 42 | DOI

[88] Swierczek, N. A.; Giles, A. C.; Rankin, C. H.; Kerr, R. A. High-throughput behavioral analysis in C. elegans, Nature Methods, Volume 8 (2011) no. 7, pp. 592-598 | DOI

[89] Teotonio, H.; Carvalho, S.; Manoel, D.; Roque, M.; Chelo, I. M. Evolution of Outcrossing in Experimental Populations of Caenorhabditis elegans, PLoS ONE, Volume 7 (2012) no. 4 | DOI

[90] Teotónio, H.; Estes, S.; Phillips, P. C.; Baer, C. F. Experimental Evolution with Caenorhabditis Nematodes, Genetics, Volume 206 (2017) no. 2, pp. 691-716 | DOI

[91] Teotónio, H.; Manoel, D.; Phillips, P. C. Genetic variation for outcrossing among Caenorhabditis elegans isolates, Evolution, Volume 60 (2006) no. 6, pp. 1300-1305 | DOI

[92] Teotónio, H.; Matos, M.; Rose, M. R. Quantitative genetics of functional characters inDrosophila melanogaster populations subjected to laboratory selection, Journal of Genetics, Volume 83 (2004) no. 3, pp. 265-277 | DOI

[93] Teotónio, H.; Rose, M. R. Variation in the reversibility of evolution, Nature, Volume 408 (2000) no. 6811, pp. 463-466 | DOI

[94] Theologidis, I.; Chelo, I. M.; Goy, C.; Teotónio, H. Reproductive assurance drives transitions to self-fertilization in experimental Caenorhabditis elegans, BMC Biology, Volume 12 (2014) no. 1 | DOI

[95] Uyeda, J. C.; Hansen, T. F.; Arnold, S. J.; Pienaar, J. The million-year wait for macroevolutionary bursts, Proceedings of the National Academy of Sciences, Volume 108 (2011) no. 38, pp. 15908-15913 | DOI

[96] Venables, W. N.; Ripley, B. D. Modern Applied Statistics with S, Statistics and Computing, Springer New York, New York, NY, 2002 | DOI

[97] de Vladar, H. P.; Barton, N. Stability and Response of Polygenic Traits to Stabilizing Selection and Mutation, Genetics, Volume 197 (2014) no. 2, pp. 749-767 | DOI

[98] Walter, G. M.; Aguirre, J. D.; Blows, M. W.; Ortiz-Barrientos, D. Evolution of Genetic Variance during Adaptive Radiation, The American Naturalist, Volume 191 (2018) no. 4 | DOI

[99] Whitlock, M. C.; Phillips, P. C.; Fowler, K. Persistence of changes in the genetic covariance matrix after a bottleneck, Evolution, Volume 56 (2002) no. 10 | DOI

[100] Yeh, S.-D.; Saxena, A. S.; Crombie, T. A.; Feistel, D.; Johnson, L. M.; Lam, I.; Lam, J.; Saber, S.; Baer, C. F. The mutational decay of male-male and hermaphrodite-hermaphrodite competitive fitness in the androdioecious nematode C. elegans, Heredity, Volume 120 (2017) no. 1, pp. 1-12 | DOI

Cited by Sources: