Section: Archaeology
Topic: Archaeology, Ecology, Paleontology

A note on predator-prey dynamics in radiocarbon datasets

10.24072/pcjournal.395 - Peer Community Journal, Volume 4 (2024), article no. e29.

Get full text PDF Peer reviewed and recommended by PCI
article image

Predator-prey interactions have been a central theme in population ecology for the past century, but real-world data sets only exist for recent, relatively short (<100 years) time spans. This limits our ability to study centennial/millennial-scale predator-prey dynamics. We propose that regional radiocarbon databases can be used to reconstruct a signal of predator-prey population dynamics in deep time, overcoming this limitation. We support our argument with examples from Pleistocene Beringia and the Holocene Judean Desert. 

Published online:
DOI: 10.24072/pcjournal.395
Type: Research article

Marom, Nimrod 1; Wolkowski, Uri 1

1 Laboratory of Archaeozoology, University of Haifa, Israel
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_395,
     author = {Marom, Nimrod and Wolkowski, Uri},
     title = {A note on predator-prey dynamics in radiocarbon datasets},
     journal = {Peer Community Journal},
     eid = {e29},
     publisher = {Peer Community In},
     volume = {4},
     year = {2024},
     doi = {10.24072/pcjournal.395},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.395/}
}
TY  - JOUR
AU  - Marom, Nimrod
AU  - Wolkowski, Uri
TI  - A note on predator-prey dynamics in radiocarbon datasets
JO  - Peer Community Journal
PY  - 2024
VL  - 4
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.395/
DO  - 10.24072/pcjournal.395
LA  - en
ID  - 10_24072_pcjournal_395
ER  - 
%0 Journal Article
%A Marom, Nimrod
%A Wolkowski, Uri
%T A note on predator-prey dynamics in radiocarbon datasets
%J Peer Community Journal
%D 2024
%V 4
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.395/
%R 10.24072/pcjournal.395
%G en
%F 10_24072_pcjournal_395
Marom, Nimrod; Wolkowski, Uri. A note on predator-prey dynamics in radiocarbon datasets. Peer Community Journal, Volume 4 (2024), article  no. e29. doi : 10.24072/pcjournal.395. https://peercommunityjournal.org/articles/10.24072/pcjournal.395/

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.archaeo.100458

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Apedaille, L.; Freedman, H.; Schilizzi, S.; Solomonovich, M. Equilibria and dynamics in an economic predator-prey model of agriculture, Mathematical and computer modelling, Volume 19 (1994), pp. 1-15 | DOI

[2] Blasco, R. A new approach to Predator-prey dynamics, Peer Community in Archaeology, Volume 1 (2024) | DOI

[3] Broughton, J. M.; Weitzel, E. M. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions, Nature Communications, Volume 9 (2018) no. 1 | DOI

[4] Carleton, W. Evaluating Bayesian Radiocarbon‐dated Event Count (REC) models for the study of long‐term human and environmental processes, Journal of Quaternary Science, Volume 36 (2021), pp. 110-123 | DOI

[5] Crema, E. Statistical Inference of Prehistoric Demography from Frequency Distributions of Radiocarbon Dates: A Review and a Guide for the Perplexed, Journal of Archaeological Method and Theory, Volume 29 (2022), pp. 1387-1418 | DOI

[6] Crema, E.; Bevan, A. Inference from large sets of radiocarbon dates: software and methods, Radiocarbon, Volume 63 (2021), pp. 23-39 | DOI

[7] Deng, J.; Wang, Y.; Guo, J.; Deng, Y.; Gao, J.; Park, Y. A similarity measure based on Kullback–Leibler divergence for collaborative filtering in sparse data, Journal of Information Science and Engineering, Volume 45 (2019), pp. 656-675 | DOI

[8] Drost, H.-G. Philentropy: Information Theory and Distance Quantification with R, Journal of Open Source Software, Volume 3 (2018) no. 26 | DOI

[9] Edwards, E.; Go, D.-H.; Oladi, R. Predator–prey dynamics in general equilibrium and the role of trade, Resource and Energy Economics, Volume 61 (2020) | DOI

[10] Elton, C.; Nicholson, M. The Ten-Year Cycle in Numbers of the Lynx in Canada, The Journal of animal ecology, Volume 11 (1942), pp. 215-244 | DOI

[11] Fox-Dobbs, K.; Leonard, J. A.; Koch, P. L. Pleistocene megafauna from eastern Beringia: Paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 261 (2008) no. 1-2, pp. 30-46 | DOI

[12] Gilg, O.; Sittler, B.; Hanski, I. Climate change and cyclic predator–prey population dynamics in the high Arctic, Global Change Biology, Volume 15 (2009) no. 11, pp. 2634-2652 | DOI

[13] Hajdas, I.; Ascough, P.; Garnett, M.; Fallon, S.; Pearson, C.; Quarta, G.; Spalding, K.; Yamaguchi, H.; Yoneda, M. Radiocarbon dating, Nature Reviews Methods Primers, Volume 1 (2021), pp. 1-26 | DOI

[14] Hillis, D.; Bull, J. An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis, Systematic biology, Volume 42 (1993), pp. 182-192 | DOI

[15] Hinz, M. Sensitivity of Radiocarbon Sum Calibration, Journal of Computer Applications in Archaeology, Volume 3 (2020) no. 1 | DOI

[16] Hone, J.; Krebs, C.; O’Donoghue, M. Is the relationship between predator and prey abundances related to climate for lynx and snowshoe hares?, Wildlife research, Volume 38 (2011), pp. 419-425 | DOI

[17] Johnson, C. J.; Mumma, M. A.; St‐Laurent, M. Modeling multispecies predator–prey dynamics: predicting the outcomes of conservation actions for woodland caribou, Ecosphere, Volume 10 (2019) no. 3 | DOI

[18] Kullback, S.; Leibler, R. A. On Information and Sufficiency, The Annals of Mathematical Statistics, Volume 22 (1951) no. 1, pp. 79-86 | DOI

[19] Laan, J.; Hogeweg, P. Predator—prey coevolution: interactions across different timescales, Proceedings of the Royal Society of London. Series B: Biological Sciences, Volume 259 (1995) no. 1354, pp. 35-42 | DOI

[20] Lazagabaster, I.; Égüez, N.; Ullman, M.; Porat, R.; Wachtel, I.; Davidovich, U.; Marom, N. Cave paleozoology in the Judean Desert: assembling records of Holocene wild mammal communities, Journal of Quaternary Science, Volume 37 (2022), pp. 651-663 | DOI

[21] Leonard, J. A.; Vilà, C.; Fox-Dobbs, K.; Koch, P. L.; Wayne, R. K.; Van Valkenburgh, B. Megafaunal Extinctions and the Disappearance of a Specialized Wolf Ecomorph, Current Biology, Volume 17 (2007) no. 13, pp. 1146-1150 | DOI

[22] Marom, N. Appendices for "A note on predator-prey dynamics in radiocarbon datasets", Zenodo (2024) (Zenodo.) | DOI

[23] Marom, N. nmar79/predator-prey_RCdates: v0.2, Zenodo, 2024 | DOI

[24] May, R. Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, Oxford, 2001 | DOI

[25] R.Core Team R: A Language and Environment for Statistical Computing, 2021

[26] Reimer, P. J.; Austin, W. E. N.; Bard, E.; Bayliss, A.; Blackwell, P. G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R. L.; Friedrich, M.; Grootes, P. M.; Guilderson, T. P.; Hajdas, I.; Heaton, T. J.; Hogg, A. G.; Hughen, K. A.; Kromer, B.; Manning, S. W.; Muscheler, R.; Palmer, J. G.; Pearson, C.; van der Plicht, J.; Reimer, R. W.; Richards, D. A.; Scott, E. M.; Southon, J. R.; Turney, C. S. M.; Wacker, L.; Adolphi, F.; Büntgen, U.; Capano, M.; Fahrni, S. M.; Fogtmann-Schulz, A.; Friedrich, R.; Köhler, P.; Kudsk, S.; Miyake, F.; Olsen, J.; Reinig, F.; Sakamoto, M.; Sookdeo, A.; Talamo, S. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, Volume 62 (2020) no. 4, pp. 725-757 | DOI

[27] Rick, J. Dates as Data: An Examination of the Peruvian Preceramic Radiocarbon Record, American antiquity, Volume 52 (1987), pp. 55-73 | DOI

[28] Southall, B. L.; Benoit‐Bird, K. J.; Moline, M. A.; Moretti, D. Quantifying deep‐sea predator–prey dynamics: Implications of biological heterogeneity for beaked whale conservation, Journal of Applied Ecology, Volume 56 (2019) no. 5, pp. 1040-1049 | DOI

[29] Stewart, M.; Carleton, W. C.; Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America, Nature Communications, Volume 12 (2021) no. 1 | DOI

[30] Stuart, A. J.; Lister, A. M. New radiocarbon evidence on the extirpation of the spotted hyaena (Crocuta crocuta (Erxl.)) in northern Eurasia, Quaternary Science Reviews, Volume 96 (2014), pp. 108-116 | DOI

[31] Vucetich, J. A.; Hebblewhite, M.; Smith, D. W.; Peterson, R. O. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems, Journal of Animal Ecology, Volume 80 (2011) no. 6, pp. 1236-1245 | DOI

[32] Williams, A. The use of summed radiocarbon probability distributions in archaeology: a review of methods, Journal of archaeological science, Volume 39 (2012), pp. 578-589 | DOI

[33] Yan, C.; Stenseth, N.; Krebs, C.; Zhang, Z. Linking climate change to population cycles of hares and lynx, Global change biology, Volume 19 (2013), pp. 3263-3271 | DOI

Cited by Sources:

block.super