Section: Ecology
Topic: Ecology, Environmental sciences, Population biology

How does dispersal shape the genetic patterns of animal populations in European cities? A simulation approach

10.24072/pcjournal.407 - Peer Community Journal, Volume 4 (2024), article no. e40.

Get full text PDF Peer reviewed and recommended by PCI

Context and objectives: Although urbanization is a major driver of biodiversity erosion, it does not affect all species equally. The neutral genetic structure of populations in a given species is affected by both genetic drift and gene flow processes. In cities, the size of animal populations determines drift and can depend on multiple processes, whereas gene flow essentially depends on the ability of species to disperse across urban areas. Considering this, we tested whether variations in dispersal constraints alone could explain the variability of neutral genetic patterns commonly observed in urban areas. Besides, we assessed how the spatial distribution of urban green spaces (UGS) and peri-urban forests acts on these patterns. Methods: We simulated multi-generational genetic processes in virtual populations of animal species occupying either UGS or forest areas (both considered as a virtual species habitat) within and around 325 European cities. We used three dispersal cost scenarios determining the ability of species to cross the least favorable land cover types, while maintaining population sizes constant among scenarios. We then assessed genetic diversity and genetic differentiation patterns for each city and each habitat types across the three cost scenarios. Results: Overall, as dispersal across the least favorable land cover types was more constrained, genetic diversity decreased and genetic differentiation increased. Across scenarios, the scale and strength of the relationship between genetic differentiation and dispersal cost-distances varied substantially, alike previously observed empirical genetic patterns. Forest areas contributed more to habitat connectivity than UGS, due to their larger area and mostly peri-urban location. Hence, population-level genetic diversity was higher in forests than in UGS and genetic differentiation was higher between UGS populations than between forest populations. However, interface habitat patches allowing individuals to move between different habitat types seemed to locally buffer these contrasts by promoting gene flow. Discussion and conclusion: Our results showed that variations in spatial patterns of dispersal, and thus gene flow, could explain the variability of empirically observed genetic patterns in urban contexts. Besides, the largest habitat areas and biodiversity sources are likely to be found in areas surrounding city centers. This should encourage urban planners to pay attention to the areas promoting dispersal movements between urban habitats (e.g., UGS) and peri-urban habitats (e.g., forests), rather than among urban habitats, when managing urban biodiversity.

Published online:
DOI: 10.24072/pcjournal.407
Type: Research article
Keywords: urban ecology; ecological networks; gene flow; biodiversity conservation; green infrastructures
Savary, Paul 1; Tannier, Cécile 2; Foltête, Jean-Christophe 2; Bourgeois, Marc 3; Vuidel, Gilles 2; Khimoun, Aurélie 4; Moal, Hervé 5; Garnier, Stéphane 4

1 Department of Biology, Concordia University, Montreal, QC, Canada
2 UMR 6049 ThéMA, Université de Franche-Comté - CNRS, Besançon, France
3 UMR 5600 Environnement, Ville, Société, Université Lyon 3 Jean Moulin - CNRS, Lyon, France
4 UMR 6282 Biogéosciences, Université de Bourgogne - CNRS, Dijon, France
5 ARP-Astrance, Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Savary, Paul and Tannier, C\'ecile and Folt\^ete, Jean-Christophe and Bourgeois, Marc and Vuidel, Gilles and Khimoun, Aur\'elie and Moal, Herv\'e and Garnier, St\'ephane},
     title = {How does dispersal shape the genetic patterns of animal populations in {European} cities? {A} simulation approach},
     journal = {Peer Community Journal},
     eid = {e40},
     publisher = {Peer Community In},
     volume = {4},
     year = {2024},
     doi = {10.24072/pcjournal.407},
     language = {en},
     url = {}
AU  - Savary, Paul
AU  - Tannier, Cécile
AU  - Foltête, Jean-Christophe
AU  - Bourgeois, Marc
AU  - Vuidel, Gilles
AU  - Khimoun, Aurélie
AU  - Moal, Hervé
AU  - Garnier, Stéphane
TI  - How does dispersal shape the genetic patterns of animal populations in European cities? A simulation approach
JO  - Peer Community Journal
PY  - 2024
VL  - 4
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.407
LA  - en
ID  - 10_24072_pcjournal_407
ER  - 
%0 Journal Article
%A Savary, Paul
%A Tannier, Cécile
%A Foltête, Jean-Christophe
%A Bourgeois, Marc
%A Vuidel, Gilles
%A Khimoun, Aurélie
%A Moal, Hervé
%A Garnier, Stéphane
%T How does dispersal shape the genetic patterns of animal populations in European cities? A simulation approach
%J Peer Community Journal
%D 2024
%V 4
%I Peer Community In
%R 10.24072/pcjournal.407
%G en
%F 10_24072_pcjournal_407
Savary, Paul; Tannier, Cécile; Foltête, Jean-Christophe; Bourgeois, Marc; Vuidel, Gilles; Khimoun, Aurélie; Moal, Hervé; Garnier, Stéphane. How does dispersal shape the genetic patterns of animal populations in European cities? A simulation approach. Peer Community Journal, Volume 4 (2024), article  no. e40. doi : 10.24072/pcjournal.407.

Peer reviewed and recommended by PCI : 10.24072/pci.ecology.100579

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Adamack, A. T.; Gruber, B. PopGenReport: simplifying basic population genetic analyses in R, Methods in Ecology and Evolution, Volume 5 (2014) no. 4, pp. 384-387 | DOI

[2] Angel, S.; Parent, J.; Civco, D. L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000-2050, Progress in Planning, Volume 75 (2011) no. 2, pp. 53-107 | DOI

[3] Aronson, M. F.; La Sorte, F. A.; Nilon, C. H.; Katti, M.; Goddard, M. A.; Lepczyk, C. A.; Warren, P. S.; Williams, N. S.; Cilliers, S.; Clarkson, B.; others A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers, Proceedings of the Royal Society B, Volume 281 (2014) no. 1780, p. 20133330 | DOI

[4] Balbi, M.; Petit, E. J.; Croci, S.; Nabucet, J.; Georges, R.; Madec, L.; Ernoult, A. Ecological relevance of least cost path analysis: An easy implementation method for landscape urban planning, Journal of Environmental Management, Volume 244 (2019), pp. 61-68 | DOI

[5] Balkenhol, N.; Cushman, S.; Storfer, A.; Waits, L. Landscape genetics: concepts, methods, applications, John Wiley & Sons, 2016

[6] Douglas Bates; Martin Mächler; Ben Bolker; Steve Walker Fitting Linear Mixed-Effects Models Using lme4, Journal of Statistical Software, Volume 67 (2015) no. 1, pp. 1-48 | DOI

[7] Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation, Ecology letters, Volume 18 (2015) no. 6, pp. 581-592 | DOI

[8] Blair, R. B. Land use and avian species diversity along an urban gradient, Ecological applications, Volume 6 (1996) no. 2, pp. 506-519 | DOI

[9] Bowcock, A. M.; Ruiz-Linares, A.; Tomfohrde, J.; Minch, E.; Kidd, J. R.; Cavalli-Sforza, L. L. High resolution of human evolutionary trees with polymorphic microsatellites, Nature, Volume 368 (1994) no. 6470, pp. 455-457 | DOI

[10] Brooks, M. E.; Kristensen, K.; Van Benthem, K. J.; Magnusson, A.; Berg, C. W.; Nielsen, A.; Skaug, H. J.; Machler, M.; Bolker, B. M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling, The R journal, Volume 9 (2017) no. 2, pp. 378-400 | DOI

[11] Clauset, A.; Newman, M. E.; Moore, C. Finding community structure in very large networks, Physical review E, Volume 70 (2004) no. 6, pp. 1-6 | DOI

[12] Coulon, A. Gene flow in the city. Unravelling the mechanisms behind the variability in urbanization effects on genetic patterns, Peer Community in Ecology, Volume 100579 (2024) | DOI

[13] Delaney, K. S.; Riley, S. P.; Fisher, R. N. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates, PLoS ONE, Volume 5 (2010) no. 9, p. e12767 | DOI

[14] DeMarco, C.; Cooper, D. S.; Torres, E.; Muchlinski, A.; Aguilar, A. Effects of urbanization on population genetic structure of western gray squirrels, Conservation Genetics, Volume 22 (2021) no. 1, pp. 67-81 | DOI

[15] Diaz, S. M.; Settele, J.; Brondizio, E.; Ngo, H.; Gueze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S.; others The global assessment report on biodiversity and ecosystem services: Summary for policy makers, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (2019)

[16] Fall, A.; Fortin, M.-J.; Manseau, M.; O'Brien, D. Spatial graphs: principles and applications for habitat connectivity, Ecosystems, Volume 10 (2007) no. 3, pp. 448-461 | DOI

[17] Fanelli, R. E.; Martin, P. R.; Robinson, O. J.; Bonier, F. Estimates of species-level tolerance of urban habitat in North American birds, Ecology, Volume 103 (2022) no. 12, p. e3821 | DOI

[18] Fidino, M.; Gallo, T.; Lehrer, E. W.; Murray, M. H.; Kay, C.; Sander, H. A.; MacDougall, B.; Salsbury, C. M.; Ryan, T. J.; Angstmann, J. L.; others Landscape-scale differences among cities alter common species' responses to urbanization, Ecological Applications, Volume 31 (2020), p. e02253 | DOI

[19] Foltete, J.-C.; Vuidel, G.; Savary, P.; Clauzel, C.; Sahraoui, Y.; Girardet, X.; Bourgeois, M. Graphab: an application for modeling and managing ecological habitat networks, Software Impacts, Volume 8 (2021), p. 100065 | DOI

[20] Frankham, R.; Ballou, J. D.; Briscoe, D. A. A primer of conservation genetics, Cambridge University Press, 2004

[21] Fusco, N. A.; Carlen, E. J.; Munshi-South, J. Urban Landscape Genetics - Are Biologists Keeping Up with the Pace of Urbanization?, Current Landscape Ecology Reports, Volume 6 (2021), pp. 35-45 | DOI

[22] Gortat, T.; Rutkowski, R.; Gryczynska, A.; Pieniazek, A.; Kozakiewicz, A.; Kozakiewicz, M. Anthropopressure gradients and the population genetic structure of Apodemus agrarius, Conservation Genetics, Volume 16 (2015) no. 3, pp. 649-659 | DOI

[23] Gortat, T.; Rutkowski, R.; Gryczynska, A.; Kozakiewicz, A.; Kozakiewicz, M. The spatial genetic structure of the yellow-necked mouse in an urban environment-a recent invader vs. a closely related permanent inhabitant, Urban Ecosystems, Volume 20 (2017) no. 3, pp. 581-594 | DOI

[24] Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed), R CRAN, 2022 (R package version 0.4.6,

[25] Hubert, L.; Arabie, P. Comparing partitions, Journal of classification, Volume 2 (1985) no. 1, pp. 193-218 | DOI

[26] Hutchison, D. W.; Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability, Evolution, Volume 53 (1999) no. 6, pp. 1898-1914 | DOI

[27] Khimoun, A.; Doums, C.; Molet, M.; Kaufmann, B.; Peronnet, R.; Eyer, P.; Mona, S. Urbanization without isolation: the absence of genetic structure among cities and forests in the tiny acorn ant Temnothorax nylanderi, Biology letters, Volume 16 (2020) no. 1, p. 20190741 | DOI

[28] Lemoy, R.; Caruso, G. Evidence for the homothetic scaling of urban forms, Environment and Planning B: Urban Analytics and City Science, Volume 47 (2020) no. 5, pp. 870-888 | DOI

[29] Lepczyk, C. A.; Aronson, M. F.; Evans, K. L.; Goddard, M. A.; Lerman, S. B.; MacIvor, J. S. Biodiversity in the city: fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation, BioScience, Volume 67 (2017) no. 9, pp. 799-807 | DOI

[30] Lourenco, A.; alvarez, D.; Wang, I. J.; Velo-Anton, G. Trapped within the city: Integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization, Molecular Ecology, Volume 26 (2017) no. 6, pp. 1498-1514 | DOI

[31] Manel, S.; Berthoud, F.; Bellemain, E.; Gaudeul, M.; Luikart, G.; Swenson, J.; Waits, L.; Taberlet, P.; Consortium, I. A new individual-based spatial approach for identifying genetic discontinuities in natural populations, Molecular Ecology, Volume 16 (2007) no. 10, pp. 2031-2043 | DOI

[32] McDonald, R. I.; Mansur, A. V.; Ascensao, F.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Guneralp, B.; Haase, D.; Hamann, M.; Hillel, O.; others Research gaps in knowledge of the impact of urban growth on biodiversity, Nature Sustainability, Volume 3 (2020) no. 1, pp. 16-24 | DOI

[33] Miles, L. S.; Dyer, R. J.; Verrelli, B. C. Urban hubs of connectivity: Contrasting patterns of gene flow within and among cities in the western black widow spider, Proceedings of the Royal Society B, Volume 285 (2018) no. 1884, p. 20181224 | DOI

[34] Miles, L. S.; Rivkin, L. R.; Johnson, M. T.; Munshi-South, J.; Verrelli, B. C. Gene flow and genetic drift in urban environments, Molecular Ecology, Volume 28 (2019) no. 18, pp. 4138-4151 | DOI

[35] Moreno-Monroy, A. I.; Schiavina, M.; Veneri, P. Metropolitan areas in the world. Delineation and population trends, Journal of Urban Economics, Volume 125 (2021), p. 103242 | DOI

[36] Munshi-South, J.; Richardson, J. Landscape Genetic Approaches to Understanding Movement and Gene Flow in Cities, Urban evolutionary biology, Oxford University Press, USA, 2020, pp. 54-73

[37] Ooms, J. The jsonlite package: A practical and consistent mapping between json data and r objects, arXiv preprint arXiv:1403.2805 (2014) | DOI

[38] Piano, E.; Souffreau, C.; Merckx, T.; Baardsen, L. F.; Backeljau, T.; Bonte, D.; Brans, K. I.; Cours, M.; Dahirel, M.; Debortoli, N.; others Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales, Global Change Biology, Volume 26 (2020) no. 3, pp. 1196-1211 | DOI

[39] Pulliam, H. R. Sources, sinks, and population regulation, The American Naturalist, Volume 132 (1988) no. 5, pp. 652-661 | DOI

[40] R Core Team R: A Language and Environment for Statistical Computing, 2022 (

[41] Rochat, E.; Manel, S.; Deschamps-Cottin, M.; Widmer, I.; Joost, S. Persistence of butterfly populations in fragmented habitats along urban density gradients: motility helps, Heredity, Volume 119 (2017) no. 5, pp. 328-338 | DOI

[42] Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance, Genetics, Volume 145 (1997) no. 4, pp. 1219-1228 | DOI

[43] Russel, V. L. emmeans: Estimated marginal means, aka least-squares means, R CRAN, 2022 (

[44] Safner, T.; Miller, M. P.; McRae, B. H.; Fortin, M.-J.; Manel, S. Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics, International Journal of Molecular Sciences, Volume 12 (2011) no. 2, pp. 865-889 | DOI

[45] Sahraoui, Y.; Foltete, J.-C.; Clauzel, C. A multi-species approach for assessing the impact of land-cover changes on landscape connectivity, Landscape Ecology, Volume 32 (2017) no. 9, pp. 1819-1835 | DOI

[46] Santangelo, J. S.; Ness, R. W.; Cohan, B.; Fitzpatrick, C. R.; Innes, S. G.; Koch, S.; Miles, L. S.; Munim, S.; Peres-Neto, P. R.; Prashad, C.; others Global urban environmental change drives adaptation in white clover, Science, Volume 375 (2022) no. 6586, pp. 1275-1281 | DOI

[47] Sarrazin, F.; Lecomte, J. Evolution in the Anthropocene, Science, Volume 351 (2016) no. 6276, pp. 922-923 | DOI

[48] Saura, S.; Estreguil, C.; Mouton, C.; Rodriguez-Freire, M. Network analysis to assess landscape connectivity trends: application to European forests (1990-2000), Ecological Indicators, Volume 11 (2011) no. 2, pp. 407-416 | DOI

[49] Savary, P.; Foltete, J.-C.; Moal, H.; Vuidel, G.; Garnier, S. Analysing landscape effects on dispersal networks and gene flow with genetic graphs, Molecular Ecology Resources, Volume 21 (2021) no. 4, pp. 1167-1185 | DOI

[50] Savary, P.; Foltete, J.-C.; Moal, H.; Vuidel, G.; Garnier, S. graph4lg: a package for constructing and analysing graphs for landscape genetics in R, Methods in Ecology and Evolution, Volume 12 (2021) no. 3, pp. 539-547 | DOI

[51] Savary, P.; Foltete, J.-C.; Moal, H.; Garnier, S. Combining landscape and genetic graphs to address key issues in landscape genetics, Landscape Ecology, Volume 37 (2022) no. 1, pp. 2293-2309 | DOI

[52] Savary, P.; Tannier, C.; Foltete, J.-C.; Bourgeois, M.; Vuidel, G.; Khimoun, A.; Moal, H.; Garnier, S. Data and codes from "How does dispersal shape the genetic patterns of animal populations in European cities? A simulation approach", Zenodo, 2024 | DOI

[53] Savary, P.; Clauzel, C.; Foltete, J.-C.; Vuidel, G.; Girardet, X.; Bourgeois, M.; Martin, F.-M.; Ropars, L.; Garnier, S. Multiple habitat graphs: how connectivity brings forth landscape ecological processes, EcoEvoRxiv (2024) (Submitted to Landscape Ecology) | DOI

[54] Savary, P.; Tannier, C.; Foltete, J.-C.; Bourgeois, M.; Vuidel, G.; Khimoun, A.; Moal, H.; Garnier, S. Supporting information - How does dispersal shape the genetic patterns of animal populations in European cities? A simulation approach, Zenodo, 2024 | DOI

[55] Schmidt, C.; Garroway, C. J. The population genetics of urban and rural amphibians in North America, Molecular Ecology, Volume 30 (2021) | DOI

[56] Schmidt, C.; Domaratzki, M.; Kinnunen, R.; Bowman, J.; Garroway, C. Continent-wide effects of urbanization on bird and mammal genetic diversity, Proceedings of the Royal Society B, Volume 287 (2020) no. 1920, p. 20192497 | DOI

[57] Schoville, S. D.; Widmer, I.; Deschamps-Cottin, M.; Manel, S. Morphological clines and weak drift along an urbanization gradient in the butterfly, Pieris rapae, PLoS ONE, Volume 8 (2013) no. 12, p. e83095 | DOI

[58] Seto, K. C.; Guneralp, B.; Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools, Proceedings of the National Academy of Sciences, Volume 109 (2012) no. 40, pp. 16083-16088 | DOI

[59] Sinkovics, C.; Seress, G.; Pipoly, I.; Vincze, E.; Liker, A. Great tits feed their nestlings with more but smaller prey items and fewer caterpillars in cities than in forests, Scientific reports, Volume 11 (2021) no. 1, pp. 1-13 | DOI

[60] Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations, Evolution, Volume 47 (1993) no. 1, pp. 264-279 | DOI

[61] Snep, R. P.; Opdam, P.; Baveco, J.; Wallis De Vries, M.; Timmermans, W.; Kwak, R.; Kuypers, V. How peri-urban areas can strengthen animal populations within cities: A modeling approach, Biological Conservation, Volume 127 (2006) no. 3, pp. 345-355 | DOI

[62] Stillfried, M.; Fickel, J.; Borner, K.; Wittstatt, U.; Heddergott, M.; Ortmann, S.; Kramer-Schadt, S.; Frantz, A. C. Do cities represent sources, sinks or isolated islands for urban wild boar population structure?, Journal of Applied Ecology, Volume 54 (2017) no. 1, pp. 272-281 | DOI

[63] Szulkin, M.; Munshi-South, J.; Charmantier, A. Urban evolutionary biology, Oxford University Press, USA, 2020

[64] Tannier, C.; Bourgeois, M.; Houot, H.; Foltete, J.-C. Impact of urban developments on the functional connectivity of forested habitats: a joint contribution of advanced urban models and landscape graphs, Land Use Policy, Volume 52 (2016), pp. 76-91 | DOI

[65] Thompson, P. L.; Guzman, L. M.; De Meester, L.; Horvath, Z.; Ptacnik, R.; Vanschoenwinkel, B.; Viana, D. S.; Chase, J. M. A process-based metacommunity framework linking local and regional scale community ecology, Ecology Letters, Volume 23 (2020) no. 9, pp. 1314-1329 | DOI

[66] Thompson, M.; Capilla-Lasheras, P.; Dominoni, D.; Reale, D.; Charmantier, A. Phenotypic variation in urban environments: mechanisms and implications, Trends in Ecology & Evolution, Volume 37 (2021) no. 2, pp. 171-182 | DOI

[67] Tournant, P.; Afonso, E.; Roue, S.; Giraudoux, P.; Foltete, J.-C. Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs, Biological Conservation, Volume 164 (2013), pp. 39-49 | DOI

[68] Urban, D.; Keitt, T. Landscape connectivity: a graph-theoretic perspective, Ecology, Volume 82 (2001) no. 5, pp. 1205-1218 | DOI

[69] Van Strien, M. J.; Holderegger, R.; Van Heck, H. J. Isolation-by-distance in landscapes: considerations for landscape genetics, Heredity, Volume 114 (2015) no. 1, pp. 27-37 | DOI

[70] Van Strien, M. J. Consequences of population topology for studying gene flow using link-based landscape genetic methods, Ecology and Evolution, Volume 7 (2017) no. 14, pp. 5070-5081 | DOI

[71] Vellend, M.; Geber, M. A. Connections between species diversity and genetic diversity, Ecology Letters, Volume 8 (2005) no. 7, pp. 767-781 | DOI

[72] Verrelli, B. C.; Alberti, M.; Des Roches, S.; Harris, N. C.; Hendry, A. P.; Johnson, M. T.; Savage, A. M.; Charmantier, A.; Gotanda, K. M.; Govaert, L.; others A global horizon scan for urban evolutionary ecology, Trends in Ecology & Evolution, Volume 37 (2022) | DOI

[73] Wandeler, P.; Funk, S. M.; Largiader, C.; Gloor, S.; Breitenmoser, U. The city-fox phenomenon: Genetic consequences of a recent colonization of urban habitat, Molecular Ecology, Volume 12 (2003) no. 3, pp. 647-656 | DOI

[74] White, J. W.; Rassweiler, A.; Samhouri, J. F.; Stier, A. C.; White, C. Ecologists should not use statistical significance tests to interpret simulation model results, Oikos, Volume 123 (2014) no. 4, pp. 385-388 | DOI

[75] Zeller, K. A.; McGarigal, K.; Whiteley, A. R. Estimating landscape resistance to movement: a review, Landscape Ecology, Volume 27 (2012) no. 6, pp. 777-797 | DOI

Cited by Sources: