Section: Evolutionary Biology
Topic: Evolution, Genetics/genomics, Population biology

Does the seed fall far from the tree? Weak fine-scale genetic structure in a continuous Scots pine population

10.24072/pcjournal.413 - Peer Community Journal, Volume 4 (2024), article no. e45.

Get full text PDF Peer reviewed and recommended by PCI

Knowledge of fine-scale spatial genetic structure, i.e., the distribution of genetic diversity at short distances, is important in evolutionary research and in practical applications such as conservation and breeding programs. In trees, related individuals often grow close to each other due to limited seed and/or pollen dispersal. The extent of seed dispersal also limits the speed at which a tree species can spread to new areas. We studied the fine-scale spatial genetic structure of Scots pine (Pinus sylvestris) in two naturally regenerated sites located 20 km from each other in continuous south-eastern Finnish forest. We genotyped almost 500 adult trees for 150k SNPs using a custom made Affymetrix array. We detected some pairwise relatedness at short distances, but the average relatedness was low and decreased with increasing distance, as expected. Despite the clustering of related individuals, the sampling sites were not differentiated (FST = 0.0005). According to our results, Scots pine has a large neighborhood size (Nb = 1680–3210), but a relatively short gene dispersal distance (σg = 36.5–71.3 m). Knowledge of Scots pine fine-scale spatial genetic structure can be used to define suitable sampling distances for evolutionary studies and practical applications. Detailed empirical estimates of dispersal are necessary both in studying post-glacial recolonization and predicting the response of forest trees to climate change.

Published online:
DOI: 10.24072/pcjournal.413
Type: Research article
Niskanen, Alina K. 1, 2; Kujala, Sonja T. 3; Kärkkäinen, Katri 3; Savolainen, Outi 1; Pyhäjärvi, Tanja 2

1 Ecology and Genetics Research Unit, University of Oulu, 90014 University of Oulu, Finland
2 Department of Forest Sciences, University of Helsinki, 00014 University of Helsinki, Finland
3 Natural Resources Institute Finland (Luke), Paavo Havaksen tie 3, 90570 Oulu, Finland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_413,
     author = {Niskanen, Alina K. and Kujala, Sonja T. and K\"arkk\"ainen, Katri and Savolainen, Outi and Pyh\"aj\"arvi, Tanja},
     title = {Does the seed fall far from the tree? {Weak} fine-scale genetic structure in a continuous {Scots} pine population},
     journal = {Peer Community Journal},
     eid = {e45},
     publisher = {Peer Community In},
     volume = {4},
     year = {2024},
     doi = {10.24072/pcjournal.413},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.413/}
}
TY  - JOUR
AU  - Niskanen, Alina K.
AU  - Kujala, Sonja T.
AU  - Kärkkäinen, Katri
AU  - Savolainen, Outi
AU  - Pyhäjärvi, Tanja
TI  - Does the seed fall far from the tree? Weak fine-scale genetic structure in a continuous Scots pine population
JO  - Peer Community Journal
PY  - 2024
VL  - 4
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.413/
DO  - 10.24072/pcjournal.413
LA  - en
ID  - 10_24072_pcjournal_413
ER  - 
%0 Journal Article
%A Niskanen, Alina K.
%A Kujala, Sonja T.
%A Kärkkäinen, Katri
%A Savolainen, Outi
%A Pyhäjärvi, Tanja
%T Does the seed fall far from the tree? Weak fine-scale genetic structure in a continuous Scots pine population
%J Peer Community Journal
%D 2024
%V 4
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.413/
%R 10.24072/pcjournal.413
%G en
%F 10_24072_pcjournal_413
Niskanen, Alina K.; Kujala, Sonja T.; Kärkkäinen, Katri; Savolainen, Outi; Pyhäjärvi, Tanja. Does the seed fall far from the tree? Weak fine-scale genetic structure in a continuous Scots pine population. Peer Community Journal, Volume 4 (2024), article  no. e45. doi : 10.24072/pcjournal.413. https://peercommunityjournal.org/articles/10.24072/pcjournal.413/

Peer reviewed and recommended by PCI : 10.24072/pci.evolbiol.100664

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Ahmed, S.; Compton, S. G.; Butlin, R. K.; Gilmartin, P. M. Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart, Proceedings of the National Academy of Sciences, Volume 106 (2009) no. 48, pp. 20342-20347 | DOI

[2] Aho, M. Autumn frost hardening of one‐year‐old Pinus sylvestris (L.) seedlings: Effect of origin and parent trees, Scandinavian Journal of Forest Research, Volume 9 (1994) no. 1-4, pp. 17-24 | DOI

[3] Aitken, S. N.; Whitlock, M. C. Assisted Gene Flow to Facilitate Local Adaptation to Climate Change, Annual Review of Ecology, Evolution, and Systematics, Volume 44 (2013) no. 1, pp. 367-388 | DOI

[4] Bizoux, J.; Daïnou, K.; Bourland, N.; Hardy, O. J.; Heuertz, M.; Mahy, G.; Doucet, J. Spatial genetic structure in Milicia excelsa (Moraceae) indicates extensive gene dispersal in a low‐density wind‐pollinated tropical tree, Molecular Ecology, Volume 18 (2009) no. 21, pp. 4398-4408 | DOI

[5] Born, C.; Hardy, O. J.; Chevallier, M.; Ossari, S.; Attéké, C.; Wickings, E. J.; Hossaert‐Mckey, M. Small‐scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation, Molecular Ecology, Volume 17 (2008) no. 8, pp. 2041-2050 | DOI

[6] Barton, N. H. The dynamics of hybrid zones, Heredity, Volume 43 (1979) no. 3, pp. 341-359 | DOI

[7] Bradburd, G. S.; Ralph, P. L. Spatial Population Genetics: It's About Time, Annual Review of Ecology, Evolution, and Systematics, Volume 50 (2019) no. 1, pp. 427-449 | DOI

[8] Béland, M.; Agestam, E.; Ekö, P. M.; Gemmel, P.; Nilsson, U. Scarification and Seedfall affects Natural Regeneration of Scots Pine Under Two Shelterwood Densities and a Clear-cut in Southern Sweden, Scandinavian Journal of Forest Research, Volume 15 (2000) no. 2, pp. 247-255 | DOI

[9] De‐Lucas, A. I.; González‐Martínez, S. C.; Vendramin, G. G.; Hidalgo, E.; Heuertz, M. Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton, Molecular Ecology, Volume 18 (2009) no. 22, pp. 4564-4576 | DOI

[10] DeSilva, R.; Dodd, R. S. Patterns of Fine-Scale Spatial Genetic Structure and Pollen Dispersal in Giant Sequoia (Sequoiadendron giganteum), Forests, Volume 12 (2021) no. 1 | DOI

[11] Debain, S.; Chadœuf, J.; Curt, T.; Kunstler, G.; Lepart, J. Comparing effective dispersal in expanding population o fPinus sylvestris and Pinus nigra in calcareous grassland, Canadian Journal of Forest Research, Volume 37 (2007) no. 4, pp. 705-718 | DOI

[12] Escudero, A.; Iriondo, J. M.; Torres, M. Spatial analysis of genetic diversity as a tool for plant conservation, Biological Conservation, Volume 113 (2003) no. 3, pp. 351-365 | DOI

[13] Excoffier, L.; Smouse, P. E.; Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data., Genetics, Volume 131 (1992) no. 2, pp. 479-491 | DOI

[14] Fahlvik, N.; Ekö, P.-M.; Pettersson, N. Influence of precommercial thinning grade on branch diameter and crown ratio in Pinus sylvestris in southern Sweden, Scandinavian Journal of Forest Research, Volume 20 (2005) no. 3, pp. 243-251 | DOI

[15] González-Díaz, P.; Jump, A. S.; Perry, A.; Wachowiak, W.; Lapshina, E.; Cavers, S. Ecology and management history drive spatial genetic structure in Scots pine, Forest Ecology and Management, Volume 400 (2017), pp. 68-76 | DOI

[16] Goslee, S. C.; Urban, D. L. The ecodist Package for Dissimilarity-based Analysis of Ecological Data, Journal of Statistical Software, Volume 22 (2007) no. 7 | DOI

[17] Gougherty, A. V.; Keller, S. R.; Fitzpatrick, M. C. Maladaptation, migration and extirpation fuel climate change risk in a forest tree species, Nature Climate Change, Volume 11 (2021) no. 2, pp. 166-171 | DOI

[18] Hardy, O. J.; Maggia, L.; Bandou, E.; Breyne, P.; Caron, H.; Chevallier, M.; Doligez, A.; Dutech, C.; Kremer, A.; Latouche‐Hallé, C.; Troispoux, V.; Veron, V.; Degen, B. Fine‐scale genetic structure and gene dispersal inferences in 10 Neotropical tree species, Molecular Ecology, Volume 15 (2005) no. 2, pp. 559-571 | DOI

[19] Hampe, A.; Petit, R. J. Conserving biodiversity under climate change: the rear edge matters, Ecology Letters, Volume 8 (2005) no. 5, pp. 461-467 | DOI

[20] Hardy, O. J.; Vekemans, X. Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models, Heredity, Volume 83 (1999) no. 2, pp. 145-154 | DOI

[21] Hardy, O. J.; Vekemans, X. spag e d i: a versatile computer program to analyse spatial genetic structure at the individual or population levels, Molecular Ecology Notes, Volume 2 (2002) no. 4, pp. 618-620 | DOI

[22] Heuertz, M. Weak spatial genetic structure in a large continuous Scots pine population – implications for conservation and breeding, Peer Community in Evolutionary Biology (2024) | DOI

[23] Jiménez-Ramírez, A.; Grivet, D.; Robledo-Arnuncio, J. J. Measuring recent effective gene flow among large populations in Pinus sylvestris: Local pollen shedding does not preclude substantial long-distance pollen immigration, PLOS ONE, Volume 16 (2021) no. 8 | DOI

[24] Jiménez‐Ramírez, A.; Solé‐Medina, A.; Ramírez‐Valiente, J. A.; Robledo‐Arnuncio, J. J. Microgeographic variation in early fitness traits of Pinus sylvestris from contrasting soils, American Journal of Botany, Volume 110 (2023) no. 4 | DOI

[25] Kahle, D.; Wickham, H. ggmap: Spatial Visualization with ggplot2, The R Journal, Volume 5 (2013) no. 1 | DOI

[26] Kastally, C.; Niskanen, A. K.; Perry, A.; Kujala, S. T.; Avia, K.; Cervantes, S.; Haapanen, M.; Kesälahti, R.; Kumpula, T. A.; Mattila, T. M.; Ojeda, D. I.; Tyrmi, J. S.; Wachowiak, W.; Cavers, S.; Kärkkäinen, K.; Savolainen, O.; Pyhäjärvi, T. Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research, The Plant Journal, Volume 109 (2022) no. 5, pp. 1337-1350 | DOI

[27] Kitamura, K.; Nakanishi, A.; Lian, C.; Goto, S. Distinctions in Fine-Scale Spatial Genetic Structure Between Growth Stages of Picea jezoensis Carr., Frontiers in Genetics, Volume 9 (2018) | DOI

[28] Koelewijn, H. P.; Koski, V.; Savolainen, O. Magnitude and timing of inbreeding depression in scots pine (Pinus sylvestris L.), Evolution, Volume 53 (1999) no. 3, pp. 758-768 | DOI

[29] Koski, V. A study of pollen dispersal as a mechanism of gene flow in conifers, Metsätieteellisen tutkimuslaitoksen julkaisuja, Volume 70 (1970) no. 4, pp. 1-78

[30] Koski, V. Embryonic lethals of Picea abies and Pinus sylvestris, Metsätieteellisen tutkimuslaitoksen julkaisuja, Volume 75 (1971) no. 3, pp. 1-30

[31] Kremer, A.; Ronce, O.; Robledo‐Arnuncio, J. J.; Guillaume, F.; Bohrer, G.; Nathan, R.; Bridle, J. R.; Gomulkiewicz, R.; Klein, E. K.; Ritland, K.; Kuparinen, A.; Gerber, S.; Schueler, S. Long‐distance gene flow and adaptation of forest trees to rapid climate change, Ecology Letters, Volume 15 (2012) no. 4, pp. 378-392 | DOI

[32] Kujala, S. T.; Knürr, T.; Kärkkäinen, K.; Neale, D. B.; Sillanpää, M. J.; Savolainen, O. Genetic heterogeneity underlying variation in a locally adaptive clinal trait in Pinus sylvestris revealed by a Bayesian multipopulation analysis, Heredity, Volume 118 (2016) no. 5, pp. 413-423 | DOI

[33] Kujala, S. T.; Avia, K.; Kumpula, T. A.; Kärkkäinen, H.; Heikkinen, J.; Kärkkäinen, K.; Savolainen, O. Within- and between-population comparisons suggest independently acting selection maintaining parallel clines in Scots pine (Pinus sylvestris), Evolution Letters, Volume 8 (2023) no. 2, pp. 231-242 | DOI

[34] Kuparinen, A.; Savolainen, O.; Schurr, F. M. Increased mortality can promote evolutionary adaptation of forest trees to climate change, Forest Ecology and Management, Volume 259 (2010) no. 5, pp. 1003-1008 | DOI

[35] Kärkkäinen, K.; Koski, V.; Savolainen, O. Geographical variation in the inbreeding depression of scots pine, Evolution, Volume 50 (1996) no. 1, pp. 111-119 | DOI

[36] Kärkkäinen, K.; Savolainen, O. The degree of early inbreeding depression determines the selfing rate at the seed stage: model and results from Pinus sylvestris (Scots pine), Heredity, Volume 71 (1993) no. 2, pp. 160-166 | DOI

[37] Legendre, P.; Fortin, M.; Borcard, D. Should the Mantel test be used in spatial analysis?, Methods in Ecology and Evolution, Volume 6 (2015) no. 11, pp. 1239-1247 | DOI

[38] Lenormand, T. Gene flow and the limits to natural selection, Trends in Ecology & Evolution, Volume 17 (2002) no. 4, pp. 183-189 | DOI

[39] Levin, D. A.; Kerster, H. W. Gene Flow in Seed Plants, Evolutionary Biology, Springer US, Boston, MA, 1974, pp. 139-220 | DOI

[40] Linder, P.; Elfving, B.; Zackrisson, O. Stand structure and successional trends in virgin boreal forest reserves in Sweden, Forest Ecology and Management, Volume 98 (1997) no. 1, pp. 17-33 | DOI

[41] Lindgren, D.; Paule, L.; Xihuan, S.; Yazdani, R.; Segerström, U.; Wallin, J.-E.; Lejdebro, M. L. Can viable pollen carry Scots pine genes over long distances?, Grana, Volume 34 (1995) no. 1, pp. 64-69 | DOI

[42] Loiselle, B. A.; Sork, V. L.; Nason, J.; Graham, C. Spatial Genetic Structure of a Tropical Understory Shrub, Psychotria officinalis (Rubiaceae), American Journal of Botany, Volume 82 (1995) no. 11 | DOI

[43] Loveless, M. Ecological Determinants of Genetic Structure in Plant Populations, Annual Review of Ecology and Systematics, Volume 15 (1984) no. 1, pp. 65-95 | DOI

[44] Lundqvist, L.; Ahlström, M. A.; Petter Axelsson, E.; Mörling, T.; Valinger, E. Multi-layered Scots pine forests in boreal Sweden result from mass regeneration and size stratification, Forest Ecology and Management, Volume 441 (2019), pp. 176-181 | DOI

[45] Lönnroth, E. Untersuchungen über die innere Struktur und Entwicklung gleichaltriger naturnormaler Kiefernbestände : basiert auf Material aus der Südhälfte Finnlands, Acta Forestalia Fennica, Volume 30 (1925) no. 1 | DOI

[46] Malécot, G. Identical loci and relationship, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 4, University of California Press, Berkeley, 1967, pp. 317-332

[47] Manichaikul, A.; Mychaleckyj, J. C.; Rich, S. S.; Daly, K.; Sale, M.; Chen, W.-M. Robust relationship inference in genome-wide association studies, Bioinformatics, Volume 26 (2010) no. 22, pp. 2867-2873 | DOI

[48] Mantel, N. The detection of disease clustering and a generalized regression approach, Cancer Research, Volume 27 (1967), pp. 209-220

[49] Marris, E. Forestry: Planting the forest of the future, Nature, Volume 459 (2009) no. 7249, pp. 906-908 | DOI

[50] Mikola, J. Bud-set phenology as an indicator of climatic adaptation of Scots pine in Finland, Silva Fennica, Volume 16 (1982), pp. 178-184

[51] Muona, O.; Harju, A. Effective population sizes, genetic variability, and mating system in natural stands and seed orchards of Pinus sylvestris, Silvae Genetica, Volume 8 (1989), pp. 221-229

[52] Nei, M. Genetic Distance between Populations, The American Naturalist, Volume 106 (1972) no. 949, pp. 283-292 | DOI

[53] Niskanen, A. K.; Kujala, S. T.; Kärkkäinen, K.; Savolainen, O.; Pyhäjärvi, T. Scots pine genotypes from Finland, code and supplementary data for the paper: "Does the seed fall far from the tree? Weak fine-scale genetic structure in a continuous Scots pine population", Niskanen et al. 2024, Peer Community Journal. figshare. Dataset , Figshare, 2024 | DOI

[54] Notivol, E.; García-Gil, M. R.; Alía, R.; Savolainen, O. Genetic variation of growth rhythm traits in the limits of a latitudinal cline in Scots pine, Canadian Journal of Forest Research, Volume 37 (2007) no. 3, pp. 540-551 | DOI

[55] Nychka, D.; Furrer, R.; Paige, J.; Sain, S. fields: Tools for spatial data., R package version 11.6, 2017 | DOI

[56] Pandey, M.; Rajora, O. P. Higher fine-scale genetic structure in peripheral than core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thuja occidentalis L.), BMC Evolutionary Biology, Volume 12 (2012) no. 1 | DOI

[57] Pembleton, L. W.; Cogan, N. O. I.; Forster, J. W. St AMPP: an R package for calculation of genetic differentiation and structure of mixed‐ploidy level populations, Molecular Ecology Resources, Volume 13 (2013) no. 5, pp. 946-952 | DOI

[58] Persyn, E.; Redon, R.; Bellanger, L.; Dina, C. The impact of a fine-scale population stratification on rare variant association test results, PLOS ONE, Volume 13 (2018) no. 12 | DOI

[59] Pritchard, J. K.; Rosenberg, N. A. Use of Unlinked Genetic Markers to Detect Population Stratification in Association Studies, The American Journal of Human Genetics, Volume 65 (1999) no. 1, pp. 220-228 | DOI

[60] Privé, F.; Luu, K.; Vilhjálmsson, B. J.; Blum, M. G. B. Performing Highly Efficient Genome Scans for Local Adaptation with R Package pcadapt Version 4, Molecular Biology and Evolution, Volume 37 (2020) no. 7, pp. 2153-2154 | DOI

[61] Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M. A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P. I.; Daly, M. J.; Sham, P. C. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses, The American Journal of Human Genetics, Volume 81 (2007) no. 3, pp. 559-575 | DOI

[62] Pyhäjärvi, T.; Kujala, S. T.; Savolainen, O. 275 years of forestry meets genomics in Pinus sylvestris, Evolutionary Applications, Volume 13 (2019) no. 1, pp. 11-30 | DOI

[63] Rautio, P.; Hallikainen, V.; Valkonen, S.; Karjalainen, J.; Puttonen, P.; Bergsten, U.; Winsa, H.; Hyppönen, M. Manipulating overstory density and mineral soil exposure for optimal natural regeneration of Scots pine, Forest Ecology and Management, Volume 539 (2023) | DOI

[64] Robledo-Arnuncio, J. J.; Gil, L. Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis, Heredity, Volume 94 (2004) no. 1, pp. 13-22 | DOI

[65] Robledo‐Arnuncio, J. J. Wind pollination over mesoscale distances: an investigation with Scots pine, New Phytologist, Volume 190 (2010) no. 1, pp. 222-233 | DOI

[66] Rousset, F. Genetic differentiation between individuals, Journal of Evolutionary Biology, Volume 13 (1999) no. 1, pp. 58-62 | DOI

[67] Rousset, F. Inferences from Spatial Population Genetics, Handbook of Statistical Genetics, 2003 | DOI

[68] Rousset, F. Genetic Differentiation and Estimation of Gene Flow from F-Statistics Under Isolation by Distance, Genetics, Volume 145 (1997) no. 4, pp. 1219-1228 | DOI

[69] Sant’Anna, C. S.; Sebbenn, A. M.; Klabunde, G. H. F.; Bittencourt, R.; Nodari, R. O.; Mantovani, A.; dos Reis, M. S. Realized pollen and seed dispersal within a continuous population of the dioecious coniferous Brazilian pine [Araucaria angustifolia (Bertol.) Kuntze], Conservation Genetics, Volume 14 (2013) no. 3, pp. 601-613 | DOI

[70] Savolainen, O.; Kärkkäinen, K.; Kuittinen, H. Estimating numbers of embryonic lethals in conifers, Heredity, Volume 69 (1992) no. 4, pp. 308-314 | DOI

[71] Scotti, I.; Lalagüe, H.; Oddou‐Muratorio, S.; Scotti‐Saintagne, C.; Ruiz Daniels, R.; Grivet, D.; Lefevre, F.; Cubry, P.; Fady, B.; González‐Martínez, S. C.; Roig, A.; Lesur‐Kupin, I.; Bagnoli, F.; Guerin, V.; Plomion, C.; Rozenberg, P.; Vendramin, G. G. Common microgeographical selection patterns revealed in four European conifers, Molecular Ecology, Volume 32 (2022) no. 2, pp. 393-411 | DOI

[72] Slatkin, M. Gene Flow in Natural Populations, Annual Review of Ecology and Systematics, Volume 16 (1985) no. 1, pp. 393-430 | DOI

[73] Slatkin, M. Gene flow and selection in a cline, Genetics, Volume 75 (1973) no. 4, pp. 733-756 | DOI

[74] Smith, J. R.; Ghazoul, J.; Burslem, D. F. R. P.; Itoh, A.; Khoo, E.; Lee, S. L.; Maycock, C. R.; Nanami, S.; Ng, K. K. S.; Kettle, C. J. Are patterns of fine-scale spatial genetic structure consistent between sites within tropical tree species?, PLOS ONE, Volume 13 (2018) no. 3 | DOI

[75] Team, R. R: A language and environment for statistical computing (version 3.6.3), R Foundation for Statistical Computing, Vienna, Austria, 2020 (https://www.R-project.org/)

[76] Torimaru, T.; Wennström, U.; Lindgren, D.; Wang, X.-R. Effects of male fecundity, interindividual distance and anisotropic pollen dispersal on mating success in a Scots pine (Pinus sylvestris) seed orchard, Heredity, Volume 108 (2011) no. 3, pp. 312-321 | DOI

[77] Tyrmi, J. S.; Vuosku, J.; Acosta, J. J.; Li, Z.; Sterck, L.; Cervera, M. T.; Savolainen, O.; Pyhäjärvi, T. Genomics of Clinal Local Adaptation in Pinus sylvestris Under Continuous Environmental and Spatial Genetic Setting, G3 Genes|Genomes|Genetics, Volume 10 (2020) no. 8, pp. 2683-2696 | DOI

[78] Vakkari, P.; Rusanen, M.; Heikkinen, J.; Huotari, T.; Kärkkäinen, K. Patterns of genetic variation in leading-edge populations of Quercus robur: genetic patchiness due to family clusters, Tree Genetics & Genomes, Volume 16 (2020) no. 5 | DOI

[79] Varis, S.; Pakkanen, A.; Galofré, A.; Pulkkinen, P. The extent of south-north pollen transfer in Finnish Scots pine, Silva Fennica, Volume 43 (2009) no. 5 | DOI

[80] Vekemans, X.; Hardy, O. J. New insights from fine‐scale spatial genetic structure analyses in plant populations, Molecular Ecology, Volume 13 (2004) no. 4, pp. 921-935 | DOI

[81] Väisänen, H.; Kellomäki, S.; Oker‐Blom, P.; Valtonen, E. Structural development of Pinus sylvestrís stands with varying initial density: A preliminary model for quality of sawn timber as affected by silvicultural measures, Scandinavian Journal of Forest Research, Volume 4 (1989) no. 1-4, pp. 223-238 | DOI

[82] Wegrzyn, J. L.; Liechty, J. D.; Stevens, K. A.; Wu, L.-S.; Loopstra, C. A.; Vasquez-Gross, H. A.; Dougherty, W. M.; Lin, B. Y.; Zieve, J. J.; Martínez-García, P. J.; Holt, C.; Yandell, M.; Zimin, A. V.; Yorke, J. A.; Crepeau, M. W.; Puiu, D.; Salzberg, S. L.; de Jong, P. J.; Mockaitis, K.; Main, D.; Langley, C. H.; Neale, D. B. Unique Features of the Loblolly Pine (Pinus taeda L.) Megagenome Revealed Through Sequence Annotation, Genetics, Volume 196 (2014) no. 3, pp. 891-909 | DOI

[83] Weir, B. S.; Cockerham, C. C. Estimating F-Statistics for the Analysis of Population Structure, Evolution, Volume 38 (1984) no. 6 | DOI

[84] Willyard, A.; Syring, J.; Gernandt, D. S.; Liston, A.; Cronn, R. Fossil Calibration of Molecular Divergence Infers a Moderate Mutation Rate and Recent Radiations for Pinus, Molecular Biology and Evolution, Volume 24 (2006) no. 1, pp. 90-101 | DOI

[85] Wright, S. Isolation by distance, Genetics, Volume 28 (1943) no. 2, pp. 114-138 | DOI

[86] Wright, S. Isolation by distance under diverse systems of mating, Genetics, Volume 31 (1946) no. 1, pp. 39-59 | DOI

[87] Yang, J.; Lee, S. H.; Goddard, M. E.; Visscher, P. M. GCTA: A Tool for Genome-wide Complex Trait Analysis, The American Journal of Human Genetics, Volume 88 (2011) no. 1, pp. 76-82 | DOI

[88] Șofletea, N.; Mihai, G.; Ciocîrlan, E.; Curtu, A. L. Genetic Diversity and Spatial Genetic Structure in Isolated Scots Pine (Pinus sylvestris L.) Populations Native to Eastern and Southern Carpathians, Forests, Volume 11 (2020) no. 10 | DOI

Cited by Sources: