Section: Ecology
Topic: Developmental biology, Ecology, Physiology

Sex differences in the relationship between maternal and foetal glucocorticoids in a free-ranging large mammal

10.24072/pcjournal.431 - Peer Community Journal, Volume 4 (2024), article no. e57.

Get full text PDF Peer reviewed and recommended by PCI
article image

Maternal phenotypes can have long-term effects on offspring phenotypes. These maternal effects may begin during gestation, when maternal glucocorticoid (GC) levels may affect foetal GC levels, thereby having an organizational effect on the offspring phenotype. Recent studies have showed that maternal effects may be different between the sexes. However, how maternal GC levels relate to foetal levels is still not completely understood. Here we related, for the first time in a free-ranging large mammal, the fallow deer (Dama dama), maternal GC levels with foetal in utero GC levels. We did this in a non-invasive way by quantifying cortisol metabolites from faecal samples collected from pregnant does during late gestation, as proxy for maternal GC level. These were then related to GC levels from hair of their neonate offspring (n = 40). We have shown that maternal GC levels were positively associated with foetal GC levels, but only in female offspring. These findings highlight sex differences, which may have evolved to optimize male growth at the cost of survival.

Published online:
DOI: 10.24072/pcjournal.431
Type: Research article
Keywords: cortisol, free-ranging, fallow deer, hair-testing, faecal metabolites

Amin, Bawan 1, 2; Fishman, Ruth 3, 4; Quinn, Matthew 1, 5; Matas, Devorah 3; Palme, Rupert 6; Koren, Lee 3; Ciuti, Simone 1

1 Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
2 Faculty of Social and Behavioural Sciences, Utrecht University, Utrecht, Netherlands
3 Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
4 Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
5 Department of Biosciences, Durham University, Durham, United Kingdom
6 Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_431,
     author = {Amin, Bawan and Fishman, Ruth and Quinn, Matthew and Matas, Devorah and Palme, Rupert and Koren, Lee and Ciuti, Simone},
     title = {Sex differences in the relationship between maternal and foetal glucocorticoids in a free-ranging large mammal},
     journal = {Peer Community Journal},
     eid = {e57},
     publisher = {Peer Community In},
     volume = {4},
     year = {2024},
     doi = {10.24072/pcjournal.431},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.431/}
}
TY  - JOUR
AU  - Amin, Bawan
AU  - Fishman, Ruth
AU  - Quinn, Matthew
AU  - Matas, Devorah
AU  - Palme, Rupert
AU  - Koren, Lee
AU  - Ciuti, Simone
TI  - Sex differences in the relationship between maternal and foetal glucocorticoids in a free-ranging large mammal
JO  - Peer Community Journal
PY  - 2024
VL  - 4
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.431/
DO  - 10.24072/pcjournal.431
LA  - en
ID  - 10_24072_pcjournal_431
ER  - 
%0 Journal Article
%A Amin, Bawan
%A Fishman, Ruth
%A Quinn, Matthew
%A Matas, Devorah
%A Palme, Rupert
%A Koren, Lee
%A Ciuti, Simone
%T Sex differences in the relationship between maternal and foetal glucocorticoids in a free-ranging large mammal
%J Peer Community Journal
%D 2024
%V 4
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.431/
%R 10.24072/pcjournal.431
%G en
%F 10_24072_pcjournal_431
Amin, Bawan; Fishman, Ruth; Quinn, Matthew; Matas, Devorah; Palme, Rupert; Koren, Lee; Ciuti, Simone. Sex differences in the relationship between maternal and foetal glucocorticoids in a free-ranging large mammal. Peer Community Journal, Volume 4 (2024), article  no. e57. doi : 10.24072/pcjournal.431. https://peercommunityjournal.org/articles/10.24072/pcjournal.431/

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.ecology.100543

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Amin, B. Sex differences in the relationship between maternal and foetal glucocorticoids in a free-ranging large mammal, OSF project, 2023 | DOI

[2] Amin, B.; Fishman, R.; Quinn, M.; Matas, D.; Palme, R.; Koren, L.; Ciuti, S. Data from: Sex Differences in the Relationship between Maternal and Foetal Glucocorticoids in a Free-Ranging Large Mammal (2.0.0) Data Set, Zenodo, 2023 | DOI

[3] Amin, B.; Jennings, D.; Smith, A.; Quinn, M.; Chari, S.; Haigh, A.; Matas, D.; Koren, L.; Ciuti, S. In Utero Accumulated Steroids Predict Neonate Anti-predator Response in a Wild Mammal, Functional Ecology, Volume 35 (2021) no. 6, pp. 1255-1267 | DOI

[4] Amin, B.; Fishman, R.; Quinn, M.; Matas, D.; Palme, R.; Koren, L.; Ciuti, S. Sex differences in the relationship between maternal and foetal glucocorticoids in a free-ranging large mammal, bioRxiv, ver. 4 peer-reviewed and recommended by Peer Community in Ecology, 2024 | DOI

[5] Auphan, N.; DiDonato, J. A.; Rosette, C.; Helmberg, A.; Karin, M. Immunosuppression by Glucocorticoids: Inhibition of NF-κB Activity Through Induction of IκB Synthesis, Science, Volume 270 (1995) no. 5234, pp. 286-290 | DOI

[6] Badyaev, A. V.; Uller, T. Parental effects in ecology and evolution: mechanisms, processes and implications, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 364 (2009) no. 1520, pp. 1169-1177 | DOI

[7] Braithwaite, E.; Hill, J.; Pickles, A.; Glover, V.; O'Donnell, K.; Sharp, H. Associations between Maternal Prenatal Cortisol and Fetal Growth Are Specific to Infant Sex: Findings from the Wirral Child Health and Development Study, Journal of Developmental Origins of Health and Disease, Volume 9 (2018) no. 4, pp. 425-431 | DOI

[8] Braun, T.; Li, S.; Sloboda, D.; Li, W.; Audette, M.; Moss, T.; Matthews, S.; Polglase, G.; Nitsos, I.; Newnham, J.; Challis, J. Effects of Maternal Dexamethasone Treatment in Early Pregnancy on Pituitary-Adrenal Axis in Fetal Sheep, Endocrinology, Volume 150 (2009) no. 12, pp. 5466-5477 | DOI

[9] Chapman, D.; Chapman, N. Fallow Deer: Their History, Distribution and Biology, Coch-y-bonddu Books, 1997

[10] Ciuti, S.; Bongi, P.; Vassale, S.; Apollonio, M. Influence of Fawning on the Spatial Behaviour and Habitat Selection of Female Fallow Deer (Dama Dama) during Late Pregnancy and Early Lactation, Journal of Zoology, Volume 268 (2006) no. 1, pp. 97-107 | DOI

[11] Ciuti, S.; Cena, F.; Bongi, P.; Apollonio, M. Benefits of a risky life for fallow deer bucks (Dama dama) aspiring to patrol a lek territory, Behaviour, Volume 148 (2011) no. 4, pp. 435-460 | DOI

[12] Dantzer, B.; Newman, A.; Boonstra, R.; Palme, R.; Boutin, S.; Humphries, M.; McAdam, A. Density Triggers Maternal Hormones That Increase Adaptive Offspring Growth in a Wild Mammal, Science, Volume 340 (2013) no. 6137, pp. 1215-1217 | DOI

[13] Desportes, G.; Andersen, L.; Bloch, D. Variation in Foetal and Postnatal Sex Ratios in Long-Finned Pilot Whales, Ophelia, Volume 39 (1994) no. 3, pp. 183-196 | DOI

[14] Edwards, C. R.; Benediktsson, R.; Lindsay, R. S.; Seckl, J. R. 11β-Hydroxysteroid dehydrogenases: Key enzymes in determining tissue-specific glucocorticoid effects, Steroids, Volume 61 (1996) no. 4, pp. 263-269 | DOI

[15] Eriksson, J.; Kajantie, E.; Osmond, C.; Thornburg, K.; Barker, D. Boys Live Dangerously in the Womb, American Journal of Human Biology, Volume 22 (2010) no. 3, pp. 330-335 | DOI

[16] Fishman, R.; Kralj-Fišer, S.; Marglit, S.; Koren, L.; Vortman, Y. Fathers and Sons, Mothers and Daughters: Sex-specific Genetic Architecture for Fetal Testosterone in a Wild Mammal, Hormones and Behavior, Volume 161 (2024) | DOI

[17] Fishman, R.; Vortman, Y.; Shanas, U.; Koren, L. Non-Model Species Deliver a Non-Model Result: Nutria Female Fetuses Neighboring Males in Utero Have Lower Testosterone, Hormones and Behavior, Volume 111 (2019), pp. 105-109 | DOI

[18] Fowden, A. The Insulin-like Growth Factors and Feto-Placental Growth, Placenta, Volume 24 (2003) no. 8–9, pp. 803-812 | DOI

[19] Gitau, R.; Cameron, A.; Fisk, N. M.; Glover, V. Fetal exposure to maternal cortisol, The Lancet, Volume 352 (1998) no. 9129, pp. 707-708 | DOI

[20] Gormally, B.; Romero, L. What Are You Actually Measuring? A Review of Techniques That Integrate the Stress Response on Distinct Time-Scales, Functional Ecology, Volume 34 (2020) no. 10, pp. 2030-2044 | DOI

[21] Griffin, L.; Haigh, A.; Amin, B.; Faull, J.; Norman, A.; Ciuti, S. Artificial Selection in Human-Wildlife Feeding Interactions, Journal of Animal Ecology, Volume 91 (2022) no. 9, pp. 1892-1905 | DOI

[22] Griffin, L. L.; Haigh, A.; Amin, B.; Faull, J.; Corcoran, F.; Baker-Horne, C.; Ciuti, S. Does artificial feeding impact neonate growth rates in a large free-ranging mammal?, Royal Society Open Science, Volume 10 (2023) no. 3 | DOI

[23] Groothuis, T.; Müller, W.; Engelhardt, N.; Carere, C.; Eising, C. Maternal Hormones as a Tool to Adjust Offspring Phenotype in Avian Species, Neuroscience & Biobehavioral Reviews, Volume 29 (2005) no. 2, pp. 329-352 | DOI

[24] Groothuis, T. G. G.; Hsu, B.-Y.; Kumar, N.; Tschirren, B. Revisiting mechanisms and functions of prenatal hormone-mediated maternal effects using avian species as a model, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 374 (2019) no. 1770 | DOI

[25] Harrison, X. A.; Donaldson, L.; Correa-Cano, M. E.; Evans, J.; Fisher, D. N.; Goodwin, C. E.; Robinson, B. S.; Hodgson, D. J.; Inger, R. A brief introduction to mixed effects modelling and multi-model inference in ecology, PeerJ, Volume 6 (2018) | DOI

[26] Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (0.4.3), 2021 | DOI

[27] Jenkins, B. R.; Vitousek, M. N.; Hubbard, J. K.; Safran, R. J. An experimental analysis of the heritability of variation in glucocorticoid concentrations in a wild avian population, Proceedings of the Royal Society B: Biological Sciences, Volume 281 (2014) no. 1790 | DOI

[28] Kane, A.; Amin, B. Amending the literature through version control, Biology Letters, Volume 19 (2023) no. 1 | DOI

[29] Kapoor, A.; Lubach, G.; Ziegler, T.; Coe, C. Hormone Levels in Neonatal Hair Reflect Prior Maternal Stress Exposure during Pregnancy, Psychoneuroendocrinology, Volume 66 (2016), pp. 111-117 | DOI

[30] Kitterman, J.; Liggins, G.; Campos, G.; Clements, J.; Forster, G.; Lee, C.; Creasy, R. Prepartum Maturation in Fetal Sheep: Relation of the Lung to Cortisol, Journal of Applied Physiology, Volume 51 (1981) no. 2, pp. 384-390 | DOI

[31] Konjević, D.; Janicki, Z.; Slavica, A.; Severin, K.; Krapinec, K.; Božić, F.; Palme, R. Non-invasive monitoring of adrenocortical activity in free-ranging fallow deer (Dama dama L.), European Journal of Wildlife Research, Volume 57 (2010) no. 1, pp. 77-81 | DOI

[32] Koren, L.; Geffen, E. Androgens and Social Status in Female Rock Hyraxes, Animal Behaviour, Volume 77 (2009) no. 1, pp. 233-238 | DOI

[33] Kruuk, L.; Clutton-Brock, T.; Albon, S.; Pemberton, J.; Guinness, F. Population density affects sex ratio variation in red deer, Nature, Volume 399 (1999) no. 6735, pp. 459-461 | DOI

[34] Liggins, G. The Role of Cortisol in Preparing the Fetus for Birth, Reproduction, Fertility and Development, Volume 6 (1994) no. 2, pp. 141-150 | DOI

[35] Liu, L.; Li, A.; Matthews, S. G. Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects, American Journal of Physiology-Endocrinology and Metabolism, Volume 280 (2001) no. 5 | DOI

[36] Marshall, D. J.; Uller, T. When is a maternal effect adaptive?, Oikos, Volume 116 (2007) no. 12, pp. 1957-1963 | DOI

[37] McElligott, A.; Gammell, M.; Harty, H.; Paini, D.; Murphy, D.; Walsh, J.; Hayden, T. Sexual Size Dimorphism in Fallow Deer (Dama Dama): Do Larger, Heavier Males Gain Greater Mating Success?, Behavioral Ecology and Sociobiology, Volume 49 (2001) no. 4, pp. 266-272 | DOI

[38] Meakin, A.; Cuffe, J.; Darby, J.; Morrison, J.; Clifton, V. Let's Talk about Placental Sex, Baby: Understanding Mechanisms That Drive Female-and Male-Specific Fetal Growth and Developmental Outcomes, International Journal of Molecular Sciences, Volume 22 (2021) no. 12 | DOI

[39] Miller, S.; Sutherland, A.; Supramaniam, V.; Walker, D.; Jenkin, G.; Wallace, E. Antenatal Glucocorticoids Reduce Growth in Appropriately Grown and Growth-Restricted Ovine Fetuses in a Sex-Specific Manner, Reproduction, Fertility and Development, Volume 24 (2012) no. 5, p. 753 | DOI

[40] Montano, M.; Wang, M.; Saal, F. Sex Differences in Plasma Corticosterone in Mouse Fetuses Are Mediated by Differential Placental Transport from the Mother and Eliminated by Maternal Adrenalectomy or Stress, Journal of Reproduction and Fertility, Volume 99 (1993), pp. 283-290 | DOI

[41] Moore, N.; Kelly, P.; Cahill, J.; Hayden, T. Mating Strategies and Mating Success of Fallow (Dama Dama) Bucks in a Non-Lekking Population, Behavioral Ecology and Sociobiology, Volume 36 (1995) no. 2, pp. 91-100 | DOI

[42] Murphy, V.; Gibson, P.; Giles, W.; Zakar, T.; Smith, R.; Bisits, A.; Kessell, C.; Clifton, V. Maternal Asthma Is Associated with Reduced Female Fetal Growth, American Journal of Respiratory and Critical Care Medicine, Volume 168 (2003) no. 11, pp. 1317-1323 | DOI

[43] Möstl, E.; Maggs, J.; Schrötter, G.; Besenfelder, U.; Palme, R. Measurement of Cortisol Metabolites in Faeces of Ruminants, Vetinary Research Communications, Volume 26 (2002), pp. 127-139 | DOI

[44] O'Connell, B.; Moritz, K.; Walker, D.; Dickinson, H. Sexually dimorphic placental development throughout gestation in the spiny mouse (Acomys cahirinus), Placenta, Volume 34 (2013) no. 2, pp. 119-126 | DOI

[45] Palme, R. Non-Invasive Measurement of Glucocorticoids: Advances and Problems, Physiology & Behavior, Volume 199 (2019), pp. 229-243 | DOI

[46] Palme, R.; Touma, C.; Arias, N.; Dominchin, M.; Lepschy, M. Steroid Extraction: Get the Best out of Faecal Samples, Wiener Tierärztliche Monatsschrift, Volume 100 (2013) no. 9–10, pp. 238-248

[47] Paquet, M. Stress and stress hormones’ transmission from mothers to offspring, Peer Community in Ecology (2024) | DOI

[48] Podmokła, E.; Drobniak, S.; Rutkowska, J. Chicken or Egg? Outcomes of Experimental Manipulations of Maternally Transmitted Hormones Depend on Administration Method - a Meta-Analysis: Maternal Hormones and Manipulation Methods, Biological Reviews, Volume 93 (2018) no. 3, pp. 1499-1517 | DOI

[49] R. Core Team R: A Language and Environment for Statistical Computing, 2020 (https://www.R-project.org/)

[50] Rosenfeld, C. Sex-Specific Placental Responses in Fetal Development, Endocrinology, Volume 156 (2015) no. 10, pp. 3422-3434 | DOI

[51] Seckl, J.; Holmes, M. Mechanisms of Disease: Glucocorticoids, Their Placental Metabolism and Fetal'programming'of Adult Pathophysiology, Nature Clinical Practice Endocrinology & Metabolism, Volume 3 (2007), pp. 479-488 | DOI

[52] Seckl, J.; Meaney, M. Glucocorticoid Programming, Annals of the New York Academy of Sciences, Volume 1032 (2004) no. 44, pp. 63-84 | DOI

[53] Seckl, J. R.; Cleasby, M.; Nyirenda, M. J. Glucocorticoids, 11β-hydroxysteroid dehydrogenase, and fetal programming, Kidney International, Volume 57 (2000) no. 4, pp. 1412-1417 | DOI

[54] Sheriff, M.; Love, O. Determining the Adaptive Potential of Maternal Stress, Ecology Letters, Volume 16 (2013) no. 2, pp. 271-280 | DOI

[55] Stoffel, M.; Nakagawa, S.; Schielzeth, H. rptR: Repeatability Estimation and Variance Decomposition by Generalized Linear Mixed-Effects Models, Methods in Ecology and Evolution, Volume 8 (2017) no. 11, pp. 1639-1644 | DOI

[56] Tomlinson, J. W.; Stewart, P. M. Cortisol metabolism and the role of 11β-hydroxysteroid dehydrogenase, Best Practice & Research Clinical Endocrinology & Metabolism, Volume 15 (2001) no. 1, pp. 61-78 | DOI

[57] Weinstock, M. The Long-Term Behavioural Consequences of Prenatal Stress, Neuroscience and Biobehavioral Reviews, Volume 32 (2008) no. 6, pp. 1073-1086 | DOI

[58] Wickham, H. ggplot2: Elegant graphics for data analysis, Springer, 2016 | DOI

[59] Wieczorek, A.; Perani, C.; Nixon, M.; Constancia, M.; Sandovici, I.; Zazara, D.; Leone, G.; Zhang, M.; Arck, P.; Solano, M. Sex-Specific Regulation of Stress-Induced Fetal Glucocorticoid Surge by the Mouse Placenta, American Journal of Physiology - Endocrinology and Metabolism, Volume 317 (2019) no. 1, pp. 109-120 | DOI

[60] Wolf, J.; Wade, M. What Are Maternal Effects (and What Are They Not)?, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 364 (2009) no. 1520, pp. 1107-1115 | DOI

Cited by Sources: