Section: Ecology
Topic: Ecology, Population biology, Statistics
Conference: Euring 2023

Accounting for observation biases associated with counts of young when estimating fecundity: case study on the arboreal-nesting red kite (Milvus milvus)

10.24072/pcjournal.436 - Peer Community Journal, Volume 4 (2024), article no. e62.

Get full text PDF Peer reviewed and recommended by PCI
article image

Counting the number of young in a brood from a distance is common practice, for example in tree-nesting birds. These counts can, however, suffer from over and undercounting, which can lead to biased estimates of fecundity (average number of nestlings per brood). Statistical model development to account for observation bias has focused on false negatives (undercounts), yet it has been shown that these models are sensitive to the presence of false positives (overcounts) when they are not accounted for. Here, we develop a model that estimates fecundity while accounting for both false positives and false negatives in brood counts. Its parameters can be estimated using a calibration approach that combines uncertain counts with certain ones, which can be obtained by accessing the brood, for example during ringing. The model uses multinomial distributions to estimate the probabilities of observing  y young conditional on the true state of a brood z (i.e., true number of young) from paired uncertain and certain counts. These classification probabilities are then used to estimate the true state of broods for which only uncertain counts are available. We use a simulation study to investigate bias and precision of the model and parameterize the simulation with empirical data from 26 red kite nests visited with ground and nest-based counts during 2021 and 2022 in central Europe. In these data, bias in counts was at most 1 in either direction, more common in larger broods, and undercounting was more common than overcounting. This led to an overall 5% negative bias in fecundity in uncertain counts. The model produced essentially unbiased estimates (relative bias < 2%) of fecundity across a range of sample sizes. This held true whether or not fecundity was the same  for nests with paired counts and those with uncertain-only counts. But the model could not estimate parameters when true states were missing from the paired data, which happened frequently in small sample sizes (n = 10 or 25). Further, we projected populations 50 years into the future using fecundity estimates corrected for observation biases from the multinomial model, and based on “raw” uncertain observations. We found that ignoring observation bias led to strong negative bias in projected population size for growing populations, but only minor negative bias in declining populations. Accounting for apparently minor biases associated with ground counts is important for ensuring accurate estimates of abundance and population dynamics especially for increasing populations. This could be particularly important for informing conservation decisions in projects aimed at recovering depleted populations.

Published online:
DOI: 10.24072/pcjournal.436
Type: Research article
Keywords: false positives, false negatives, multinomial model, classification, calibration, population dynamics

Sollmann, Rahel 1; Adenot, Nathalie 2; Spakovszky, Peter 3; Windt, Jendrik 2; Mattsson, Brady J. 2

1 Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research – Berlin, Germany
2 Institute of Wildlife Biology and Game Management, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences – Vienna, Austria
3 TB Raab GmbH – Deutsch-Wagram, Austria
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Sollmann, Rahel and Adenot, Nathalie and Spakovszky, Peter and Windt, Jendrik and Mattsson, Brady J.},
     title = {Accounting for observation biases associated with counts of young when estimating fecundity: case study on the arboreal-nesting red kite {(\protect\emph{Milvus} milvus})},
     journal = {Peer Community Journal},
     eid = {e62},
     publisher = {Peer Community In},
     volume = {4},
     year = {2024},
     doi = {10.24072/pcjournal.436},
     language = {en},
     url = {}
AU  - Sollmann, Rahel
AU  - Adenot, Nathalie
AU  - Spakovszky, Peter
AU  - Windt, Jendrik
AU  - Mattsson, Brady J.
TI  - Accounting for observation biases associated with counts of young when estimating fecundity: case study on the arboreal-nesting red kite (Milvus milvus)
JO  - Peer Community Journal
PY  - 2024
VL  - 4
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.436
LA  - en
ID  - 10_24072_pcjournal_436
ER  - 
%0 Journal Article
%A Sollmann, Rahel
%A Adenot, Nathalie
%A Spakovszky, Peter
%A Windt, Jendrik
%A Mattsson, Brady J.
%T Accounting for observation biases associated with counts of young when estimating fecundity: case study on the arboreal-nesting red kite (Milvus milvus)
%J Peer Community Journal
%D 2024
%V 4
%I Peer Community In
%R 10.24072/pcjournal.436
%G en
%F 10_24072_pcjournal_436
Sollmann, Rahel; Adenot, Nathalie; Spakovszky, Peter; Windt, Jendrik; Mattsson, Brady J. Accounting for observation biases associated with counts of young when estimating fecundity: case study on the arboreal-nesting red kite (Milvus milvus). Peer Community Journal, Volume 4 (2024), article  no. e62. doi : 10.24072/pcjournal.436.

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.ecology.100632

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Andersen, D. E. Nest-Defense Behavior of Red-tailed Hawks, The Condor, Volume 92 (1990) no. 4, pp. 991-997 | DOI

[2] Boyce, M. S. Population Viability Analysis, Annual review of Ecology and Systematics, Volume 23 (1992), pp. 481-506 | DOI

[3] Brack, I. V.; Kindel, A.; Oliveira, L. F. B. Detection Errors in Wildlife Abundance Estimates from Unmanned Aerial Systems (UAS) Surveys: Synthesis, Solutions, and Challenges, Methods in Ecology and Evolution, Volume 9 (2018) no. 8, pp. 1864-1873 | DOI

[4] Brooks, S. P.; Gelman, A. General Methods for Monitoring Convergence of Iterative Simulations, Journal of Computational and Graphical Statistics, Volume 7 (1998) no. 4, pp. 434-455 | DOI

[5] Brown, J. L.; Steenhof, K.; Kochert, M. N.; Bond, L. Estimating Raptor Nesting Success: Old and New Approaches: Raptor Nest Survival Models, The Journal of Wildlife Management, Volume 77 (2013) no. 5, pp. 1067-1074 | DOI

[6] Buckland, S. T.; Rexstad, E. A.; Marques, T. A.; Oedekoven, C. S. Distance Sampling: Methods and Applications, 431, Springer International Publishing, Cham, Switzerland, 2015 | DOI

[7] Chambert, T.; Miller, D. A. W.; Nichols, J. D. Modeling False Positive Detections in Species Occurrence Data under Different Study Designs, Ecology, Volume 96 (2015) no. 2, pp. 332-339 | DOI

[8] Clement, M. J.; Rodhouse, T. J.; Ormsbee, P. C.; Szewczak, J. M.; Nichols, J. D. Accounting for False-Positive Acoustic Detections of Bats Using Occupancy Models, Journal of Applied Ecology, Volume 51 (2014) no. 5, pp. 1460-1467 | DOI

[9] Cramp, S.; Simmons, K. E. L. Handbook of the Birds of Europe the Middle East and North Africa: The Birds of the Western Palearctic. II, Hawks to Bustards, Oxford University Press, Oxford, UK, 1980

[10] Dénes, F. V.; Silveira, L. F.; Beissinger, S. R. Estimating Abundance of Unmarked Animal Populations: Accounting for Imperfect Detection and Other Sources of Zero Inflation, Methods in Ecology and Evolution, Volume 6 (2015) no. 5, pp. 543-556 | DOI

[11] Etterson, M. A.; Ellis-Felege, S. N.; Evers, D.; Gauthier, G.; Grzybowski, J. A.; Mattsson, B. J.; Nagy, L. R.; Olsen, B. J.; Pease, C. M.; van der Burg, M. P.; Potvien, A. Modeling Fecundity in Birds: Conceptual Overview, Current Models, and Considerations for Future Developments, Ecological Modelling, Volume 222 (2011) no. 14, pp. 2178-2190 | DOI

[12] Fuller, M. R.; Mosher, J. A. Methods of Detecting and Counting Raptors: A Review, Studies in Avian Biology, Volume 6 (1981) no. 2357, p. 264

[13] Fuller, M. R.; Hatfield, J. S.; Lindquist, E. L. Assessing Ground-Based Counts of Nestling Bald Eagles in Northeastern Minnesota, Wildlife Society Bulletin (1995), pp. 169-174

[14] Gallego, D.; Sarasola, J. H. Using Drones to Reduce Human Disturbance While Monitoring Breeding Status of an Endangered Raptor, Remote Sensing in Ecology and Conservation, Volume 7 (2021) no. 3, pp. 550-561 | DOI

[15] Goszczyński, J. Density and Productivity of Common Buzzard Buteo Buteo and Goshawk Accipiter Gentilis Populations in Rogów, Central Poland, Acta Ornithologica, Volume 32 (1997) no. 2, pp. 149-155

[16] Götmark, F. The Effects of Investigator Disturbance on Nesting Birds, Current Ornithology, Springer US, Boston, MA, 1992, pp. 63-104 | DOI

[17] Ibáñez-Álamo, J. D.; Sanllorente, O.; Soler, M. The Impact of Researcher Disturbance on Nest Predation Rates: A Meta-analysis, Ibis, Volume 154 (2012) no. 1, pp. 5-14 | DOI

[18] Katzenberger, J.; Gottschalk, E.; Balkenhol, N.; Waltert, M. Long-Term Decline of Juvenile Survival in German Red Kites, Journal of Ornithology, Volume 160 (2019) no. 2, pp. 337-349 | DOI

[19] Kéry, M.; Royle, J. A. Applied Hierarchical Modelling in Ecology—Analysis of Distribution, Abundance and Species Richness Using R and BUGS: Volume 1: Prelude and Static Models., Academic Press, New York, NY, USA, 2015 | DOI

[20] Lahoz-Monfort, J. J.; Guillera-Arroita, G.; Tingley, R. Statistical Approaches to Account for False-Positive Errors in Environmental DNA Samples, Molecular Ecology Resources, Volume 16 (2016) no. 3, pp. 673-685 | DOI

[21] Lieury, N.; Devillard, S.; Besnard, A.; Gimenez, O.; Hameau, O.; Ponchon, C.; Millon, A. Designing Cost-Effective Capture-Recapture Surveys for Improving the Monitoring of Survival in Bird Populations, Biological Conservation, Volume 214 (2017), pp. 233-241 | DOI

[22] Link, W. A.; Schofield, M. R.; Barker, R. J.; Sauer, J. R. On the Robustness of N-mixture Models, Ecology, Volume 99 (2018) no. 7, pp. 1547-1551 | DOI

[23] MacKenzie, D. I.; Nichols, J. D.; Lachman, G. B.; Droege, S.; Andrew Royle, J.; Langtimm, C. A. Estimating Site Occupancy Rates When Detection Probabilities Are Less than One, Ecology, Volume 83 (2002) no. 8, pp. 2248-2255 | DOI

[24] Mammen, U.; Thümmler, T.; Stubbe, M. 25 Jahre Monitoring Greifvögel Und Eulen Europas, Ornithologische Mitteilungen, Volume 69 (2017) no. 7/8, pp. 171-182

[25] McKibben, F. E.; Abadi, F.; Frey, J. K. To Model or Not to Model: False Positive Detection Error in Camera Surveys, The Journal of Wildlife Management, Volume 87 (2023) no. 3, p. e22365 | DOI

[26] Miller, D. A.; Nichols, J. D.; McClintock, B. T.; Grant, E. H. C.; Bailey, L. L.; Weir, L. A. Improving Occupancy Estimation When Two Types of Observational Error Occur: Non-Detection and Species Misidentification, Ecology, Volume 92 (2011) no. 7, pp. 1422-1428 | DOI

[27] Nakashima, Y. Potentiality and Limitations of N-mixture and Royle-Nichols Models to Estimate Animal Abundance Based on Noninstantaneous Point Surveys, Population Ecology, Volume 62 (2020) no. 1, pp. 151-157 | DOI

[28] Otis, D. L.; Burnham, K. P.; White, G. C.; Anderson, D. R. Statistical Inference from Capture Data on Closed Animal Populations, Wildlife Monographs, Volume 62 (1978), pp. 3-135

[29] R Core Team R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2022 (

[30] Royle, J. A. N‐Mixture Models for Estimating Population Size from Spatially Replicated Counts, Biometrics, Volume 60 (2004) no. 1, pp. 108-115 | DOI

[31] Royle, J. A.; Link, W. A. A General Class of Multinomial Mixture Models for Anuran Calling Survey Data, Ecology, Volume 86 (2005) no. 9, pp. 2505-2512 | DOI

[32] Royle, J. A.; Link, W. A. Generalized Site Occupancy Models Allowing for False Positive and False Negative Errors, Ecology, Volume 87 (2006) no. 4, pp. 835-841 | DOI

[33] Sample, C.; Fryxell, J. M.; Bieri, J. A.; Federico, P.; Earl, J. E.; Wiederholt, R.; Mattsson, B. J.; Flockhart, D. T. T.; Nicol, S.; Diffendorfer, J. E.; Thogmartin, W. E.; Erickson, R. A.; Norris, D. R. A General Modeling Framework for Describing Spatially Structured Population Dynamics, Ecology and Evolution, Volume 8 (2018) no. 1, pp. 493-508 | DOI

[34] Sæther, B.-E.; Coulson, T.; Grøtan, V.; Engen, S.; Altwegg, R.; Armitage, K. B.; Barbraud, C.; Becker, P. H.; Blumstein, D. T.; Dobson, F. S.; Festa-Bianchet, M.; Gaillard, J.-M.; Jenkins, A.; Jones, C.; Nicoll, M. A. C.; Norris, K.; Oli, M. K.; Ozgul, A.; Weimerskirch, H. How Life History Influences Population Dynamics in Fluctuating Environments, The American Naturalist, Volume 182 (2013) no. 6, pp. 743-759 | DOI

[35] Şen, B.; Akçakaya, H. R. Fecundity and Density Dependence Can Be Estimated from Mark–Recapture Data for Making Population Projections, The Condor, Volume 124 (2022) no. 1, p. duab064 | DOI

[36] Sergio, F.; Tanferna, A.; Chicano, J.; Blas, J.; Tavecchia, G.; Hiraldo, F. Protected Areas under Pressure: Decline, Redistribution, Local Eradication and Projected Extinction of a Threatened Predator, the Red Kite, in Doñana National Park, Spain, Endangered Species Research, Volume 38 (2019), pp. 189-204 | DOI

[37] Sergio, F.; Tavecchia, G.; Blas, J.; Tanferna, A.; Hiraldo, F. Demographic Modeling to Fine-Tune Conservation Targets: Importance of Pre-Adults for the Decline of an Endangered Raptor, Ecological Applications, Volume 31 (2021) no. 3, p. e2266 | DOI

[38] Sibly, R. M.; Hone, J. Population growth rate and its determinants: an overview, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, Volume 357 (2002) no. 1425, pp. 1153-1170 | DOI

[39] Sollmann, R.; Adenot, N.; Spakovszky, P.; Windt, J.; Mattsson, B. J. Appendix 1+2 for 'Accounting for Observation Biases Associated with Counts of Young When Estimating Fecundity: Case Study on the Arboreal-Nesting Red Kite (Milvus Milvus)'., Zenodo, 2024 | DOI

[40] Sollmann, R. Rasrage/Sollmann_et_al_Nestling_counts_PCJ: V2. Zenodo., Zenodo, 2024 | DOI

[41] Tyre, A. J.; Tenhumberg, B.; Field, S. A.; Niejalke, D.; Parris, K.; Possingham, H. P. Improving Precision and Reducing Bias in Biological Surveys: Estimating False-Negative Error Rates, Ecological Applications, Volume 13 (2003) no. 6, pp. 1790-1801 | DOI

[42] de Valpine, P.; Paciorek, C.; Turek, D.; Michaud, N.; Anderson-Bergman, C.; Obermeyer, F.; Wehrhahn Cortes, C.; Rodríguez, A.; Temple Lang, D.; Zhang, W.; Paganin, S.; Hug, J.; van Dam-Bates, P. nimble: MCMC, Particle Filtering, and Programmable Hierarchical Modeling, CRAN: Contributed Packages, 2016 | DOI

[43] de Valpine, P.; Turek, D.; Paciorek, C. J.; Anderson-Bergman, C.; Lang, D. T.; Bodik, R. Programming With Models: Writing Statistical Algorithms for General Model Structures With NIMBLE, Journal of Computational and Graphical Statistics, Volume 26 (2017) no. 2, pp. 403-413 | DOI

[44] White, C. M.; Sherrod, S. K. Advantages and Disadvantages of the Use of Rotor-Winged Aircraft in Raptor Surveys, Journal of Raptor Research, Volume 7 (1973) no. 3, p. 3

[45] Williams, B. K.; Nichols, J. D.; Conroy, M. J. Analysis and Management of Animal Populations, Academic Press, San Diego, CA, USA, 2002

[46] Yoccoz, N. Accounting for Observation Biases Associated with Counts of Young: You May Count Too Many or Too Few..., Peer Community in Ecology (2024), p. 100632 | DOI

[47] Zhao, Q. On the Sampling Design of Spatially Explicit Integrated Population Models, Methods in Ecology and Evolution, Volume 11 (2020) no. 10, pp. 1207-1220 | DOI

[48] Zipkin, E. F.; Saunders, S. P. Synthesizing Multiple Data Types for Biological Conservation Using Integrated Population Models, Biological Conservation, Volume 217 (2018), pp. 240-250 | DOI

Cited by Sources: