Section: Ecology
Topic: Ecology, Environmental sciences

The taxonomic and functional biogeographies of phytoplankton and zooplankton communities across boreal lakes

10.24072/pcjournal.74 - Peer Community Journal, Volume 1 (2021), article no. e69.

Get full text PDF Peer reviewed and recommended by PCI
article image
Strong trophic interactions link primary producers (phytoplankton) and consumers (zooplankton) in lakes. However, the influence of such interactions on the biogeographical distribution of the taxa and functional traits of planktonic organisms in lakes has never been explicitly tested. To better understand the spatial distribution of these two major aquatic groups, we related composition across boreal lakes (104 for zooplankton and 48 for phytoplankton) in relation to a common suite of environmental and spatial factors. We then directly tested the degree of coupling in their taxonomic and functional distributions across the subset of common lakes. Although phytoplankton composition responded mainly to properties related to water quality while zooplankton composition responded more strongly to lake morphometry, we found significant coupling between their spatial distributions at taxonomic and functional levels based on a Procrustes test. This coupling was not significant after removing the effect of environmental drivers (water quality and morphometry) on the spatial distributions of the two groups. This result suggests that top-down and bottom-up effects (e.g. nutrient concentration and predation) drove trophic interactions at the landscape level. We also found a significant effect of dispersal limitation on the distribution of taxa, which could explain why coupling was stronger for taxa than for traits at the scale of this study, with a turnover of species observed between regions, but no trait turnover. Our results indicate that landscape pelagic food web responses to anthropogenic changes in ecosystem parameters should be driven by a combination of top-down and bottom-factors for taxonomic composition, but with a relative resilience in functional trait composition of lake communities.
Published online:
DOI: 10.24072/pcjournal.74
Type: Research article

St-Gelais, Nicolas F. 1; Vogt, Richard J. 1; del Giorgio, Paul A. 1; Beisner, Beatrix E. 1

1 Interuniversity Research Group in Limnology/Groupe de Recherche Interuniversitaire en Limnologie (GRIL) and Department of Biological Sciences, University of Québec at Montréal, Montréal, QC, Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {St-Gelais, Nicolas F. and Vogt, Richard J. and del Giorgio, Paul A. and Beisner, Beatrix E.},
     title = {The taxonomic and functional biogeographies of phytoplankton and zooplankton communities across boreal lakes},
     journal = {Peer Community Journal},
     eid = {e69},
     publisher = {Peer Community In},
     volume = {1},
     year = {2021},
     doi = {10.24072/pcjournal.74},
     url = {}
AU  - St-Gelais, Nicolas F.
AU  - Vogt, Richard J.
AU  - del Giorgio, Paul A.
AU  - Beisner, Beatrix E.
TI  - The taxonomic and functional biogeographies of phytoplankton and zooplankton communities across boreal lakes
JO  - Peer Community Journal
PY  - 2021
VL  - 1
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.74
ID  - 10_24072_pcjournal_74
ER  - 
%0 Journal Article
%A St-Gelais, Nicolas F.
%A Vogt, Richard J.
%A del Giorgio, Paul A.
%A Beisner, Beatrix E.
%T The taxonomic and functional biogeographies of phytoplankton and zooplankton communities across boreal lakes
%J Peer Community Journal
%D 2021
%V 1
%I Peer Community In
%R 10.24072/pcjournal.74
%F 10_24072_pcjournal_74
St-Gelais, Nicolas F.; Vogt, Richard J.; del Giorgio, Paul A.; Beisner, Beatrix E. The taxonomic and functional biogeographies of phytoplankton and zooplankton communities across boreal lakes. Peer Community Journal, Volume 1 (2021), article  no. e69. doi : 10.24072/pcjournal.74.

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.ecology.100082

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Anderson, M. J.; Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology, Ecology, Volume 84 (2003) no. 2, pp. 511-525 | DOI

[2] Barnett, A. J.; Finlay, K.; Beisner, B. E. Functional diversity of crustacean zooplankton communities: towards a trait-based classification, Freshwater Biology, Volume 52 (2007) no. 5, pp. 796-813 | DOI

[3] Beisner, B. E.; Peres-Neto, P. R.; Lindström, E. S.; Barnett, A.; Longhi, M. L. The role of environmental and spatial processes in structuring lake communities from bacteria to fish, Ecology, Volume 87 (2006) no. 12, pp. 2985-2991 | DOI

[4] Borcard, D.; Legendre, P.; Drapeau, P. Partialling out the Spatial Component of Ecological Variation, Ecology, Volume 73 (1992) no. 3, pp. 1045-1055 | DOI

[5] Bowman, M. F.; Ingram, R.; Reid, R. A.; Somers, K. M.; Yan, N. D.; Paterson, A. M.; Morgan, G. E.; Gunn, J. M. Temporal and spatial concordance in community composition of phytoplankton, zooplankton, macroinvertebrate, crayfish, and fish on the Precambrian Shield, Canadian Journal of Fisheries and Aquatic Sciences, Volume 65 (2008) no. 5, pp. 919-932 | DOI

[6] Brown, J. H.; Gillooly, J. F.; Allen, A. P.; Savage, V. M.; West, G. B. Toward a metabolic theory of ecology, Ecology, Volume 85 (2004) no. 7, pp. 1771-1789 | DOI

[7] Carpenter, S. R.; Kitchell, J. F.; Hodgson, J. R. Cascading Trophic Interactions and Lake Productivity, BioScience, Volume 35 (1985) no. 10, pp. 634-639 | DOI

[8] Cattaneo, A.; Prairie, Y. T. Temporal variability in the chemical characteristics along the Rivière de l'Achigan: How many samples are necessary to describe stream chemistry?, Canadian Journal of Fisheries and Aquatic Sciences, Volume 52 (1995) no. 4, pp. 828-835 | DOI

[9] Christoffersen, K.; Riemann, B.; Klysner, A.; Søndergaard, M. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water, Limnology and Oceanography, Volume 38 (1993) no. 3, pp. 561-573 | DOI

[10] Culver, D. A.; Boucherle, M. M.; Bean, D. J.; Fletcher, J. W. Biomass of Freshwater Crustacean Zooplankton from Length–Weight Regressions, Canadian Journal of Fisheries and Aquatic Sciences, Volume 42 (1985) no. 8, pp. 1380-1390 | DOI

[11] De Bie, T.; De Meester, L.; Brendonck, L.; Martens, K.; Goddeeris, B.; Ercken, D.; Hampel, H.; Denys, L.; Vanhecke, L.; Gucht, K.; Wichelen, J.; Vyverman, W.; Declerck, S. A. J. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms, Ecology Letters, Volume 15 (2012) no. 7, pp. 740-747 | DOI

[12] Declerck, S. A. J.; Coronel, J. S.; Legendre, P.; Brendonck, L. Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands, Ecography, Volume 34 (2011) no. 2, pp. 296-305 | DOI

[13] Diamond JM Assembly of species communities. Ecology and evolution of communities. In: Diamond, J.M. and Cody, M.L., Eds., Ecology and Evolution of Communities, Harvard University Press, Boston, (1975)

[14] Duan, M.; Liu, Y.; Yu, Z.; Baudry, J.; Li, L.; Wang, C.; Axmacher, J. C. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles, Scientific Reports, Volume 6 (2016) no. 1 | DOI

[15] Ghadouani, A.; Pinel-Alloul, B.; Prepas, E. E. Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities, Freshwater Biology, Volume 48 (2003) no. 2, pp. 363-381 | DOI

[16] Gotelli, N. J.; Graves, G. R.; Rahbek, C. Macroecological signals of species interactions in the Danish avifauna, Proceedings of the National Academy of Sciences, Volume 107 (2010) no. 11, pp. 5030-5035 | DOI

[17] Gravel, D.; Massol, F.; Canard, E.; Mouillot, D.; Mouquet, N. Trophic theory of island biogeography, Ecology Letters, Volume 14 (2011) no. 10, pp. 1010-1016 | DOI

[18] Hébert, M.-P.; Beisner, B. E.; Maranger, R. A compilation of quantitative functional traits for marine and freshwater crustacean zooplankton, Ecology, Volume 97 (2016) no. 4, p. 1081-1081 | DOI

[19] Heino, J.; Melo, A. S.; Siqueira, T.; Soininen, J.; Valanko, S.; Bini, L. M. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects, Freshwater Biology, Volume 60 (2015) no. 5, pp. 845-869 | DOI

[20] Hillebrand, H.; Dürselen, C.-D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume calculation for pelagic and benthic microalgae, Journal of Phycology, Volume 35 (1999) no. 2, pp. 403-424 | DOI

[21] Jackson, D. A.; Harvey, H. H. Biogeographic Associations in Fish Assemblages: Local vs. Regional Processes, Ecology, Volume 70 (1989) no. 5, pp. 1472-1484 | DOI

[22] Jeziorski, A.; Tanentzap, A. J.; Yan, N. D.; Paterson, A. M.; Palmer, M. E.; Korosi, J. B.; Rusak, J. A.; Arts, M. T.; Keller, W. (.; Ingram, R.; Cairns, A.; Smol, J. P. The jellification of north temperate lakes, Proceedings of the Royal Society B: Biological Sciences, Volume 282 (2015) no. 1798 | DOI

[23] Keller, W.; Pitblado, J. R. The Distribution of Crustacean Zooplankton in Northern Ontario, Canada, Journal of Biogeography, Volume 16 (1989) no. 3, pp. 249-259 | DOI

[24] Knisely, K.; Geller, W. Selective feeding of four zooplankton species on natural lake phytoplankton, Oecologia, Volume 69 (1986) no. 1, pp. 86-94 | DOI

[25] Kraft, N. J. B.; Ackerly, D. D. Assembly of Plant Communities, Ecology and the Environment, Springer New York, New York, NY, 2014, pp. 67-88 | DOI

[26] Legendre, P.; Gallagher, E. D. Ecologically meaningful transformations for ordination of species data, Oecologia, Volume 129 (2001) no. 2, pp. 271-280 | DOI

[27] Leibold, M. A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J. M.; Hoopes, M. F.; Holt, R. D.; Shurin, J. B.; Law, R.; Tilman, D.; Loreau, M.; Gonzalez, A. The metacommunity concept: a framework for multi-scale community ecology, Ecology Letters, Volume 7 (2004) no. 7, pp. 601-613 | DOI

[28] Litchman, E.; Ohman, M. D.; Kiørboe, T. Trait-based approaches to zooplankton communities, Journal of Plankton Research, Volume 35 (2013) no. 3, pp. 473-484 | DOI

[29] Longhi, M. L.; Beisner, B. E. Patterns in taxonomic and functional diversity of lake phytoplankton, Freshwater Biology, Volume 55 (2010) no. 6, pp. 1349-1366 | DOI

[30] Lorenzen, C. J. Determination of chlorophyll and pheo-pigments: spectrophotometric equations, Limnology and Oceanography, Volume 12 (1967) no. 2, pp. 343-346 | DOI

[31] Mardia, K. e. a. Multivariate analysis, Academic press, (1980)

[32] McCauley, E. The estimation of the abundance and biomass of zooplankton in samples. A manual on methods for the assessment of secondary productivity in fresh waters ((1984)), pp. 228-265

[33] McQueen, D. J.; Johannes, M. R. S.; Post, J. R.; Stewart, T. J.; Lean, D. R. S. Bottom‐Up and Top‐Down Impacts on Freshwater Pelagic Community Structure, Ecological Monographs, Volume 59 (1989) no. 3, pp. 289-309 | DOI

[34] Nakagawa, S.; Freckleton, R. P. Missing inaction: the dangers of ignoring missing data, Trends in Ecology & Evolution, Volume 23 (2008) no. 11, pp. 592-596 | DOI

[35] Nush EA Comparation of different methods for clorophyll and pheopigment determination, Archiv für Hydrobiologie, Volume 14 (1980), pp. 14-36

[36] O'Brien, W. J.; Barfield, M.; Bettez, N. D.; Gettel, G. M.; Hershey, A. E.; McDonald, M. E.; Miller, M. C.; Mooers, H.; Pastor, J.; Richards, C.; Schuldt, J. Physical, chemical, and biotic effects on arctic zooplankton communities and diversity, Limnology and Oceanography, Volume 49 (2004) no. 4part2, pp. 1250-1261 | DOI

[37] Oksanen, J. e. a. vegan: Community Ecology Package. R package version 2.3-0, (2015)

[38] Ovaskainen, O.; Tikhonov, G.; Norberg, A.; Guillaume Blanchet, F.; Duan, L.; Dunson, D.; Roslin, T.; Abrego, N. How to make more out of community data? A conceptual framework and its implementation as models and software, Ecology Letters, Volume 20 (2017) no. 5, pp. 561-576 | DOI

[39] Özkan, K.; Jeppesen, E.; Davidson, T. A.; Søndergaard, M.; Lauridsen, T. L.; Bjerring, R.; Johansson, L. S.; Svenning, J.-C. Cross-taxon congruence in lake plankton largely independent of environmental gradients, Ecology, Volume 95 (2014) no. 10, pp. 2778-2788 | DOI

[40] Padial, A. A.; Ceschin, F.; Declerck, S. A. J.; De Meester, L.; Bonecker, C. C.; Lansac-Tôha, F. A.; Rodrigues, L.; Rodrigues, L. C.; Train, S.; Velho, L. F. M.; Bini, L. M. Dispersal Ability Determines the Role of Environmental, Spatial and Temporal Drivers of Metacommunity Structure, PLoS ONE, Volume 9 (2014) no. 10 | DOI

[41] Paffenhöfer, G.-A. Food ingestion by the marine planktonic copepod Paracalanus in relation to abundance and size distribution of food, Marine Biology, Volume 80 (1984) no. 3, pp. 323-333 | DOI

[42] Pearson, R. G.; Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?, Global Ecology and Biogeography, Volume 12 (2003) no. 5, pp. 361-371 | DOI

[43] Petchey, O. L.; Gaston, K. J. Functional diversity: back to basics and looking forward, Ecology Letters, Volume 9 (2006) no. 6, pp. 741-758 | DOI

[44] Pinel-Alloul, B.; Méthot, G.; Verrault, G.; Vigneault, Y. Phytoplankton in Quebec Lakes: Variation with Lake Morphometry, and with Natural and Anthropogenic Acidification, Canadian Journal of Fisheries and Aquatic Sciences, Volume 47 (1990) no. 5, pp. 1047-1057 | DOI

[45] Pinel-Alloul, B.; Niyonsenga, T.; Legendre, P.; Gril, G. Spatial and environmental components of freshwater zooplankton structure, Écoscience, Volume 2 (1995) no. 1, pp. 1-19 | DOI

[46] Pollock, L. J.; Tingley, R.; Morris, W. K.; Golding, N.; O'Hara, R. B.; Parris, K. M.; Vesk, P. A.; McCarthy, M. A. Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model ( JSDM ), Methods in Ecology and Evolution, Volume 5 (2014) no. 5, pp. 397-406 | DOI

[47] Porter KG The plant-animal interface in freshwater ecosystems, American Scientist, Volume 65 (1977), pp. 159-170

[48] Post, D. M.; Pace, M. L.; Hairston, N. G. Ecosystem size determines food-chain length in lakes, Nature, Volume 405 (2000) no. 6790, pp. 1047-1049 | DOI

[49] Raudsepp-Hearne, C.; Peterson, G. D.; Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes, Proceedings of the National Academy of Sciences, Volume 107 (2010) no. 11, pp. 5242-5247 | DOI

[50] Rodríguez, M. A.; Magnan, P.; Lacasse, S. Fish Species Composition and Lake Abiotic Variables in Relation to the Abundance and Size Structure of Cladoceran Zooplankton, Canadian Journal of Fisheries and Aquatic Sciences, Volume 50 (1993) no. 3, pp. 638-647 | DOI

[51] Roy, G. The Great Geological Domains of Québec. content/uploads/geological-domains-quebec.pdf, (2012)

[52] Soininen, J.; Kokocinski, M.; Estlander, S.; Kotanen, J.; Heino, J. Neutrality, niches, and determinants of plankton metacommunity structure across boreal wetland ponds, Ecoscience, Volume 14 (2007) no. 2, pp. 146-154 | DOI

[53] Soininen, J.; Korhonen, J. J.; Karhu, J.; Vetterli, A. Disentangling the spatial patterns in community composition of prokaryotic and eukaryotic lake plankton, Limnology and Oceanography, Volume 56 (2011) no. 2, pp. 508-520 | DOI

[54] Sommer, U.; Adrian, R.; De Senerpont Domis, L.; Elser, J. J.; Gaedke, U.; Ibelings, B.; Jeppesen, E.; Lürling, M.; Molinero, J. C.; Mooij, W. M.; van Donk, E.; Winder, M. Beyond the Plankton Ecology Group (PEG) Model: Mechanisms Driving Plankton Succession, Annual Review of Ecology, Evolution, and Systematics, Volume 43 (2012) no. 1, pp. 429-448 | DOI

[55] Sommer U; Gliwicz ZM; Lampert W; Duncan A The PEG-model of seasonal succession of planktonic events in fresh waters, Archiv für Hydrobiologie, Volume 106 (1986), pp. 433-471

[56] Srivastava, D. S. Habitat structure, trophic structure and ecosystem function: interactive effects in a bromeliad–insect community, Oecologia, Volume 149 (2006) no. 3, pp. 493-504 | DOI

[57] Stekhoven, D. J.; Buhlmann, P. MissForest-non-parametric missing value imputation for mixed-type data, Bioinformatics, Volume 28 (2011) no. 1, pp. 112-118 | DOI

[58] Sterner, R. W. The Role of Grazers in Phytoplankton Succession, Brock/Springer Series in Contemporary Bioscience, Springer Berlin Heidelberg, Berlin, Heidelberg, 1989, pp. 107-170 | DOI

[59] Stomp, M.; Huisman, J.; Mittelbach, G. G.; Litchman, E.; Klausmeier, C. A. Large-scale biodiversity patterns in freshwater phytoplankton, Ecology, Volume 92 (2011) no. 11, pp. 2096-2107 | DOI

[60] Vanderploeg, H. A. Seasonal Particle-Size Selection by Diaptomus sicilis in Offshore Lake Michigan, Canadian Journal of Fisheries and Aquatic Sciences, Volume 38 (1981) no. 5, pp. 504-517 | DOI

[61] Watson, S. B.; McCauley, E.; Downing, J. A. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status, Limnology and Oceanography, Volume 42 (1997) no. 3, pp. 487-495 | DOI

[62] Wiens, J. J. The niche, biogeography and species interactions, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 366 (2011) no. 1576, pp. 2336-2350 | DOI

[63] Wissel, B.; Boeing, W. J.; Ramcharan, C. W. Effects of water color on predation regimes and zooplankton assemblages in freshwater lakes, Limnology and Oceanography, Volume 48 (2003) no. 5, pp. 1965-1976 | DOI

Cited by Sources: