Section: Infections
Topic: Biology of interactions, Microbiology

Whole blood transcriptome profiles of trypanotolerant and trypanosusceptible cattle highlight a differential modulation of metabolism and immune response during infection by Trypanosoma congolense

10.24072/pcjournal.239 - Peer Community Journal, Volume 3 (2023), article no. e17.

Get full text PDF Peer reviewed and recommended by PCI

Animal African trypanosomosis, caused by blood protozoan parasites transmitted mainly by tsetse flies, represents a major constraint for millions of cattle in sub-Saharan Africa. Exposed cattle include trypanosusceptible indicine breeds, severely affected by the disease, and West African taurine breeds called trypanotolerant owing to their ability to control parasite development, survive and grow in enzootic areas. Until now the genetic basis of trypanotolerance remains unclear. Here, to improve knowledge of the biological processes involved in trypanotolerance versus trypanosusceptibility, we identified bovine genes differentially expressed in five West African cattle breeds during an experimental infection by Trypanosoma congolense and their biological functions. To this end, whole blood genome-wide transcriptome of three trypanotolerant taurine breeds (N’Dama, Lagune and Baoulé), one susceptible zebu (Zebu Fulani) and one African taurine x zebu admixed breed (Borgou) were profiled by RNA sequencing at four time points, one before and three during infection. As expected, infection had a major impact on cattle blood transcriptome regardless of the breed. The functional analysis of differentially expressed genes over time in each breed confirmed an early activation of the innate immune response, followed by an activation of the humoral response and an inhibition of T cell functions at the chronic stage of infection. More importantly, we highlighted overlooked features, such as a strong disturbance in host metabolism and cellular energy production that differentiates trypanotolerant and trypanosusceptible breeds. N’Dama breed showed the earliest regulation of immune response, associated with a strong activation of cellular energy production, also observed in Lagune, and to a lesser extent in Baoulé. Susceptible Zebu Fulani breed differed from other breeds by the strongest modification in lipid metabolism regulation. Overall, this study provides a better understanding of the biological mechanisms at work during infection, especially concerning the interplay between immunity and metabolism that seems differentially regulated depending on the cattle breeds.

Published online:
DOI: 10.24072/pcjournal.239
Type: Research article
Peylhard, Moana 1, 2; Berthier, David 1, 2; Dayo, Guiguigbaza-Kossigan 3; Chantal, Isabelle 1, 2; Sylla, Souleymane 3; Nidelet, Sabine 4; Dubois, Emeric 4; Martin, Guillaume 5, 6; Sempéré, Guilhem 1, 2; Flori, Laurence 7; Thévenon, Sophie 1, 2

1 CIRAD, UMR INTERTRYP, F-34398 Montpellier, France
2 INTERTRYP, Univ. Montpellier, CIRAD, IRD, Montpellier, France
3 Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso
4 Montpellier GenomiX, France Génomique, Montpellier, France
5 CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
6 UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
7 SELMET, INRAE, CIRAD, Montpellier Supagro, University of Montpellier, Montpellier, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_239,
     author = {Peylhard, Moana and Berthier, David and Dayo, Guiguigbaza-Kossigan and Chantal, Isabelle and Sylla, Souleymane and Nidelet, Sabine and Dubois, Emeric and Martin, Guillaume and Semp\'er\'e, Guilhem and Flori, Laurence and Th\'evenon, Sophie},
     title = {Whole blood transcriptome profiles of trypanotolerant and trypanosusceptible cattle highlight a differential modulation of metabolism and immune response during infection by {\protect\emph{Trypanosoma} congolense}},
     journal = {Peer Community Journal},
     eid = {e17},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.239},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.239/}
}
TY  - JOUR
AU  - Peylhard, Moana
AU  - Berthier, David
AU  - Dayo, Guiguigbaza-Kossigan
AU  - Chantal, Isabelle
AU  - Sylla, Souleymane
AU  - Nidelet, Sabine
AU  - Dubois, Emeric
AU  - Martin, Guillaume
AU  - Sempéré, Guilhem
AU  - Flori, Laurence
AU  - Thévenon, Sophie
TI  - Whole blood transcriptome profiles of trypanotolerant and trypanosusceptible cattle highlight a differential modulation of metabolism and immune response during infection by Trypanosoma congolense
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.239/
DO  - 10.24072/pcjournal.239
ID  - 10_24072_pcjournal_239
ER  - 
%0 Journal Article
%A Peylhard, Moana
%A Berthier, David
%A Dayo, Guiguigbaza-Kossigan
%A Chantal, Isabelle
%A Sylla, Souleymane
%A Nidelet, Sabine
%A Dubois, Emeric
%A Martin, Guillaume
%A Sempéré, Guilhem
%A Flori, Laurence
%A Thévenon, Sophie
%T Whole blood transcriptome profiles of trypanotolerant and trypanosusceptible cattle highlight a differential modulation of metabolism and immune response during infection by Trypanosoma congolense
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.239/
%R 10.24072/pcjournal.239
%F 10_24072_pcjournal_239
Peylhard, Moana; Berthier, David; Dayo, Guiguigbaza-Kossigan; Chantal, Isabelle; Sylla, Souleymane; Nidelet, Sabine; Dubois, Emeric; Martin, Guillaume; Sempéré, Guilhem; Flori, Laurence; Thévenon, Sophie. Whole blood transcriptome profiles of trypanotolerant and trypanosusceptible cattle highlight a differential modulation of metabolism and immune response during infection by Trypanosoma congolense. Peer Community Journal, Volume 3 (2023), article  no. e17. doi : 10.24072/pcjournal.239. https://peercommunityjournal.org/articles/10.24072/pcjournal.239/

Peer reviewed and recommended by PCI : 10.24072/pci.infections.100008

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Ahmed, M. S.; Byeon, S. E.; Jeong, Y.; Miah, M. A.; Salahuddin, M.; Lee, Y.; Park, S.-S.; Bae, Y.-S. Dab2 , a negative regulator of DC immunogenicity, is an attractive molecular target for DC-based immunotherapy, OncoImmunology, Volume 4 (2015) no. 1 | DOI

[2] Ahsan, F.; Maertzdorf, J.; Guhlich-Bornhof, U.; Kaufmann, S. H. E.; Moura-Alves, P. IL-36/LXR axis modulates cholesterol metabolism and immune defense to Mycobacterium tuberculosis, Scientific Reports, Volume 8 (2018) no. 1 | DOI

[3] Akol, G.; Authie, E.; Pinder, M.; Moloo, S.; Roelants, G.; Murray, M. Susceptibility and immune responses of Zebu and taurine cattle of West Africa to infection with transmitted by, Veterinary Immunology and Immunopathology, Volume 11 (1986) no. 4, pp. 361-373 | DOI

[4] Alsan, M. The Effect of the TseTse Fly on African Development, American Economic Review, Volume 105 (2015) no. 1, pp. 382-410 | DOI

[5] Álvarez, I.; Pérez-Pardal, L.; Traoré, A.; Fernández, I.; Goyache, F. Lack of haplotype structuring for two candidate genes for trypanotolerance in cattle, Journal of Animal Breeding and Genetics, Volume 133 (2015) no. 2, pp. 105-114 | DOI

[6] Álvarez, I.; Pérez-Pardal, L.; Traoré, A.; Fernández, I.; Goyache, F. African Cattle do not Carry Unique Mutations on the Exon 9 of the ARHGAP15 Gene, Animal Biotechnology, Volume 27 (2015) no. 1, pp. 9-12 | DOI

[7] Alves, N. L.; van Leeuwen, E. M. M.; Derks, I. A. M.; van Lier, R. A. W. Differential Regulation of Human IL-7 Receptor α Expression by IL-7 and TCR Signaling, The Journal of Immunology, Volume 180 (2008) no. 8, pp. 5201-5210 | DOI

[8] Anene, B.; Chime, A.; Anika, S. The production performance of imported Friesian cattle under heavy Trypanosoma challenge in a rain forest zone of Nigeria, British Veterinary Journal, Volume 147 (1991) no. 3, pp. 275-282 | DOI

[9] Ammar, Z.; Plazolles, N.; Baltz, T.; Coustou, V. Identification of Trans-Sialidases as a Common Mediator of Endothelial Cell Activation by African Trypanosomes, PLoS Pathogens, Volume 9 (2013) no. 10 | DOI

[10] Anosa, V. O.; Logan-Henfrey, L. L.; Wells, C. W. The role of the bone marrow in bovine trypanotolerance II. Macrophage function inTrypanosoma congolense-infected cattle, Comparative Haematology International, Volume 9 (1999) no. 4, pp. 208-218 | DOI

[11] Arango Duque, G.; Descoteaux, A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases, Frontiers in Immunology, Volume 5 (2014) | DOI

[12] Archer, N. S.; Nassif, N. T.; O'Brien, B. A. Genetic variants of SLC11A1 are associated with both autoimmune and infectious diseases: systematic review and meta-analysis, Genes & Immunity, Volume 16 (2015) no. 4, pp. 275-283 | DOI

[13] Arredouani, M.; Yang, Z.; Ning, Y.; Qin, G.; Soininen, R.; Tryggvason, K.; Kobzik, L. The Scavenger Receptor MARCO Is Required for Lung Defense against Pneumococcal Pneumonia and Inhaled Particles, Journal of Experimental Medicine, Volume 200 (2004) no. 2, pp. 267-272 | DOI

[14] Arunachalam, B.; Phan, U. T.; Geuze, H. J.; Cresswell, P. Enzymatic reduction of disulfide bonds in lysosomes: Characterization of a Gamma-interferon-inducible lysosomal thiol reductase (GILT), Proceedings of the National Academy of Sciences, Volume 97 (2000) no. 2, pp. 745-750 | DOI

[15] Authiée, E.; Muteti, D. K.; Williams, D. J. L. Antibody responses to invariant antigens of Trypanosoma congolense in cattle of differing susceptibility to trypanosomiasis, Parasite Immunology, Volume 15 (1993) no. 2, pp. 101-111 | DOI

[16] Badran, B. M.; Kunstman, K.; Stanton, J.; Moschitta, M.; Zerghe, A.; Akl, H.; Burny, A.; Wolinsky, S. M.; Willard-Gallo, K. E. Transcriptional Regulation of the Human CD3 γ Gene: The TATA-Less CD3 γ Promoter Functions via an Initiator and Contiguous Sp-Binding Elements, The Journal of Immunology, Volume 174 (2005) no. 10, pp. 6238-6249 | DOI

[17] Banham, A. H.; Powrie, F. M.; Suri-Payer, E. FOXP3+ regulatory T cells: Current controversies and future perspectives, European Journal of Immunology, Volume 36 (2006) no. 11, pp. 2832-2836 | DOI

[18] Becher, B.; Tugues, S.; Greter, M. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation, Immunity, Volume 45 (2016) no. 5, pp. 963-973 | DOI

[19] Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, Journal of the Royal Statistical Society: Series B (Methodological), Volume 57 (1995) no. 1, pp. 289-300 | DOI

[20] Berthier, D.; Peylhard, M.; Dayo, G.-K.; Flori, L.; Sylla, S.; Bolly, S.; Sakande, H.; Chantal, I.; Thevenon, S. A Comparison of Phenotypic Traits Related to Trypanotolerance in Five West African Cattle Breeds Highlights the Value of Shorthorn Taurine Breeds, PLOS ONE, Volume 10 (2015) no. 5 | DOI

[21] Boda, C.; Courtioux, B.; Roques, P.; Pervieux, L.; Vatunga, G.; Josenando, T.; Ayenengoye, C. R.; Bouteille, B.; Jauberteau, M.-O.; Bisser, S. Immunophenotypic Lymphocyte Profiles in Human African Trypanosomiasis, PLoS ONE, Volume 4 (2009) no. 7 | DOI

[22] Bommer, G. T.; MacDougald, O. A. Regulation of Lipid Homeostasis by the Bifunctional SREBF2-miR33a Locus, Cell Metabolism, Volume 13 (2011) no. 3, pp. 241-247 | DOI

[23] Bosschaerts, T.; Guilliams, M.; Stijlemans, B.; De Baetselier, P.; Beschin, A. Understanding the role of monocytic cells in liver inflammation using parasite infection as a model, Immunobiology, Volume 214 (2009) no. 9-10, pp. 737-747 | DOI

[24] Bosschaerts, T.; Morias, Y.; Stijlemans, B.; Hérin, M.; Porta, C.; Sica, A.; Mantovani, A.; De Baetselier, P.; Beschin, A. IL-10 limits production of pathogenic TNF by M1 myeloid cells through induction of nuclear NF-κB p50 member in Trypanosoma congolense infection-resistant C57BL/6 mice, European Journal of Immunology, Volume 41 (2011) no. 11, pp. 3270-3280 | DOI

[25] Bouvier-Muller, J.; Allain, C.; Tabouret, G.; Enjalbert, F.; Portes, D.; Noirot, C.; Rupp, R.; Foucras, G. Whole blood transcriptome analysis reveals potential competition in metabolic pathways between negative energy balance and response to inflammatory challenge, Scientific Reports, Volume 7 (2017) no. 1 | DOI

[26] Bouyer, J.; Bouyer, F.; Donadeu, M.; Rowan, T.; Napier, G. Community- and farmer-based management of animal African trypanosomosis in cattle, Trends in Parasitology, Volume 29 (2013) no. 11, pp. 519-522 | DOI

[27] Bowdish, D. M. E.; Sakamoto, K.; Kim, M.-J.; Kroos, M.; Mukhopadhyay, S.; Leifer, C. A.; Tryggvason, K.; Gordon, S.; Russell, D. G. MARCO, TLR2, and CD14 Are Required for Macrophage Cytokine Responses to Mycobacterial Trehalose Dimycolate and Mycobacterium tuberculosis, PLoS Pathogens, Volume 5 (2009) no. 6 | DOI

[28] Bradley, D. G.; MacHugh, D. E.; Cunningham, P.; Loftus, R. T. Mitochondrial diversity and the origins of African and European cattle., Proceedings of the National Academy of Sciences, Volume 93 (1996) no. 10, pp. 5131-5135 | DOI

[29] Budd, L. DFID-funded tsetse and trypanosomiasis research and development since 1980, Economic Analysis (Vol. 2). Department of International Development, UK, London, 1999

[30] Caro-Maldonado, A.; Wang, R.; Nichols, A. G.; Kuraoka, M.; Milasta, S.; Sun, L. D.; Gavin, A. L.; Abel, E. D.; Kelsoe, G.; Green, D. R.; Rathmell, J. C. Metabolic Reprogramming Is Required for Antibody Production That Is Suppressed in Anergic but Exaggerated in Chronically BAFF-Exposed B Cells, The Journal of Immunology, Volume 192 (2014) no. 8, pp. 3626-3636 | DOI

[31] Chakir, H.; Wang, H.; Lefebvre, D. E.; Webb, J.; Scott, F. W. T-bet/GATA-3 ratio as a measure of the Th1/Th2 cytokine profile in mixed cell populations: predominant role of GATA-3, Journal of Immunological Methods, Volume 278 (2003) no. 1-2, pp. 157-169 | DOI

[32] Chen, Y.; Lun, A.; Smyth, G. Differential expression analysis of complex RNA-seq experiments using edgeR In: Statistical Analysis of Next Generation Sequence Data (ed. Nettleton SDaDS), Springer, New-York (2014), pp. 51-74

[33] CIPEA Le bétail trypanotolérant d'Afrique occidentale et centrale (Vol. 2), Addis Abeba, Ethiopie, 1979

[34] Cnops, J.; De Trez, C.; Stijlemans, B.; Keirsse, J.; Kauffmann, F.; Barkhuizen, M.; Keeton, R.; Boon, L.; Brombacher, F.; Magez, S. NK-, NKT- and CD8-Derived IFNγ Drives Myeloid Cell Activation and Erythrophagocytosis, Resulting in Trypanosomosis-Associated Acute Anemia, PLOS Pathogens, Volume 11 (2015) no. 6 | DOI

[35] Correia, C. N.; McLoughlin, K. E.; Nalpas, N. C.; Magee, D. A.; Browne, J. A.; Rue-Albrecht, K.; Gordon, S. V.; MacHugh, D. E. RNA Sequencing (RNA-Seq) Reveals Extremely Low Levels of Reticulocyte-Derived Globin Gene Transcripts in Peripheral Blood From Horses (Equus caballus) and Cattle (Bos taurus), Frontiers in Genetics, Volume 9 (2018) | DOI

[36] Baetselier, P.; Namangala, B.; Noël, W.; Brys, L.; Pays, E.; Beschin, A. Alternative versus classical macrophage activation during experimental African trypanosomosis, International Journal for Parasitology, Volume 31 (2001) no. 5-6, pp. 575-587 | DOI

[37] De Muylder, G.; Daulouède, S.; Lecordier, L.; Uzureau, P.; Morias, Y.; Van Den Abbeele, J.; Caljon, G.; Hérin, M.; Holzmuller, P.; Semballa, S.; Courtois, P.; Vanhamme, L.; Stijlemans, B.; De Baetselier, P.; Barrett, M. P.; Barlow, J. L.; McKenzie, A. N. J.; Barron, L.; Wynn, T. A.; Beschin, A.; Vincendeau, P.; Pays, E. A Trypanosoma brucei Kinesin Heavy Chain Promotes Parasite Growth by Triggering Host Arginase Activity, PLoS Pathogens, Volume 9 (2013) no. 10 | DOI

[38] Deng, Y.; Kerdiles, Y.; Chu, J.; Yuan, S.; Wang, Y.; Chen, X.; Mao, H.; Zhang, L.; Zhang, J.; Hughes, T.; Deng, Y.; Zhang, Q.; Wang, F.; Zou, X.; Liu, C.-G.; Freud, A. G.; Li, X.; Caligiuri, M. A.; Vivier, E.; Yu, J. Transcription Factor Foxo1 Is a Negative Regulator of Natural Killer Cell Maturation and Function, Immunity, Volume 42 (2015) no. 3, pp. 457-470 | DOI

[39] Dobin, A.; Davis, C. A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T. R. STAR: ultrafast universal RNA-seq aligner, Bioinformatics, Volume 29 (2012) no. 1, pp. 15-21 | DOI

[40] Doko, A.; Verhulst, A.; Pandey, V.; Van Der Stuyft, P. Trypanosomose expérimentale à Trypanosoma brucei brucei chez les taurins Holstein et les zébus Bororo blancs, Revue d’élevage et de médecine vétérinaire des pays tropicaux, Volume 50 (1997) no. 1, pp. 23-28 | DOI

[41] Donnelly, R. P.; Finlay, D. K. Glucose, glycolysis and lymphocyte responses, Molecular Immunology, Volume 68 (2015) no. 2, pp. 513-519 | DOI

[42] Duleu, S.; Vincendeau, P.; Courtois, P.; Semballa, S.; Lagroye, I.; Daulouède, S.; Boucher, J.-L.; Wilson, K. T.; Veyret, B.; Gobert, A. P. Mouse Strain Susceptibility to Trypanosome Infection: An Arginase-Dependent Effect, The Journal of Immunology, Volume 172 (2004) no. 10, pp. 6298-6303 | DOI

[43] Esin, S.; Counoupas, C.; Aulicino, A.; Brancatisano, F. L.; Maisetta, G.; Bottai, D.; Di Luca, M.; Florio, W.; Campa, M.; Batoni, G. Interaction of Mycobacterium tuberculosis Cell Wall Components with the Human Natural Killer Cell Receptors NKp44 and Toll-Like Receptor 2, Scandinavian Journal of Immunology, Volume 77 (2013) no. 6, pp. 460-469 | DOI

[44] Fairlamb, A. H.; Cerami, A. Metabolism and functions of trypanothione in the kinetoplastida, Annual Review of Microbiology, Volume 46 (1992) no. 1, pp. 695-729 | DOI

[45] Fessler, M. B. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism, Current Allergy and Asthma Reports, Volume 15 (2015) no. 8 | DOI

[46] Flori, L.; Thevenon, S.; Dayo, G.-K.; Senou, M.; Sylla, S.; Berthier, D.; Moazami-Goudarzi, K.; Gautier, M. Adaptive admixture in the West African bovine hybrid zone: insight from the Borgou population, Molecular Ecology, Volume 23 (2014) no. 13, pp. 3241-3257 | DOI

[47] Flynn, J.; Sileghem, M. The role of the macrophage in induction of immunosuppression in Trypanosoma congolense-infected cattle, Immunology, Volume 74 (1991), pp. 310-316

[48] Franke, A.; Balschun, T.; Sina, C.; Ellinghaus, D.; Häsler, R.; Mayr, G.; Albrecht, M.; Wittig, M.; Buchert, E.; Nikolaus, S.; Gieger, C.; Wichmann, H. E.; Sventoraityte, J.; Kupcinskas, L.; Onnie, C. M.; Gazouli, M.; Anagnou, N. P.; Strachan, D.; McArdle, W. L.; Mathew, C. G.; Rutgeerts, P.; Vermeire, S.; Vatn, M. H.; Krawczak, M.; Rosenstiel, P.; Karlsen, T. H.; Schreiber, S. Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL), Nature Genetics, Volume 42 (2010) no. 4, pp. 292-294 | DOI

[49] Fry, T. J.; Christensen, B. L.; Komschlies, K. L.; Gress, R. E.; Mackall, C. L. Interleukin-7 restores immunity in athymic T-cell–depleted hosts, Blood, Volume 97 (2001) no. 6, pp. 1525-1533 | DOI

[50] Gobert, A. P.; Daulouede, S.; Lepoivre, M.; Boucher, J. L.; Bouteille, B.; Buguet, A.; Cespuglio, R.; Veyret, B.; Vincendeau, P. Arginine Availability Modulates Local Nitric Oxide Production and Parasite Killing in Experimental Trypanosomiasis, Infection and Immunity, Volume 68 (2000) no. 8, pp. 4653-4657 | DOI

[51] Green, H. P.; del Pilar Molina Portela, M.; St. Jean, E. N.; Lugli, E. B.; Raper, J. Evidence for a Trypanosoma brucei Lipoprotein Scavenger Receptor, Journal of Biological Chemistry, Volume 278 (2003) no. 1, pp. 422-427 | DOI

[52] Guerrero, N. A.; Camacho, M.; Vila, L.; Íñiguez, M. A.; Chillón-Marinas, C.; Cuervo, H.; Poveda, C.; Fresno, M.; Gironès, N. Cyclooxygenase-2 and Prostaglandin E2 Signaling through Prostaglandin Receptor EP-2 Favor the Development of Myocarditis during Acute Trypanosoma cruzi Infection, PLOS Neglected Tropical Diseases, Volume 9 (2015) no. 8 | DOI

[53] Guertin, D. A.; Stevens, D. M.; Thoreen, C. C.; Burds, A. A.; Kalaany, N. Y.; Moffat, J.; Brown, M.; Fitzgerald, K. J.; Sabatini, D. M. Ablation in Mice of the mTORC Components raptor, rictor, or mLST8 Reveals that mTORC2 Is Required for Signaling to Akt-FOXO and PKCα, but Not S6K1, Developmental Cell, Volume 11 (2006) no. 6, pp. 859-871 | DOI

[54] Guilliams, M.; Oldenhove, G.; Noel, W.; Hérin, M.; Brys, L.; Loi, P.; Flamand, V.; Moser, M.; De Baetselier, P.; Beschin, A. African Trypanosomiasis: Naturally Occurring Regulatory T Cells Favor Trypanotolerance by Limiting Pathology Associated with Sustained Type 1 Inflammation, The Journal of Immunology, Volume 179 (2007) no. 5, pp. 2748-2757 | DOI

[55] Hamilton, C. A.; Mahan, S.; Bell, C. R.; Villarreal-Ramos, B.; Charleston, B.; Entrican, G.; Hope, J. C. Frequency and phenotype of natural killer cells and natural killer cell subsets in bovine lymphoid compartments and blood, Immunology, Volume 151 (2017) no. 1, pp. 89-97 | DOI

[56] Hamilton, J. A.; Achuthan, A. Colony stimulating factors and myeloid cell biology in health and disease, Trends in Immunology, Volume 34 (2013) no. 2, pp. 81-89 | DOI

[57] Hanotte, O.; Bradley, D. G.; Ochieng, J. W.; Verjee, Y.; Hill, E. W.; Rege, J. E. O. African Pastoralism: Genetic Imprints of Origins and Migrations, Science, Volume 296 (2002) no. 5566, pp. 336-339 | DOI

[58] Hanotte, O.; Ronin, Y.; Agaba, M.; Nilsson, P.; Gelhaus, A.; Horstmann, R.; Sugimoto, Y.; Kemp, S.; Gibson, J.; Korol, A.; Soller, M.; Teale, A. Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N'Dama and susceptible East African Boran cattle, Proceedings of the National Academy of Sciences, Volume 100 (2003) no. 13, pp. 7443-7448 | DOI

[59] Harashima, A.; Matsuo, Y.; Drexler, H. G.; Okochi, A.; Motoda, R.; Tanimoto, M.; Orita, K. Transcription factor expression in B-cell precursor-leukemia cell lines: preferential expression of T-bet, Leukemia Research, Volume 29 (2005) no. 7, pp. 841-848 | DOI

[60] Harden, J. L.; Lewis, S. M.; Lish, S. R.; Suárez-Fariñas, M.; Gareau, D.; Lentini, T.; Johnson-Huang, L. M.; Krueger, J. G.; Lowes, M. A. The tryptophan metabolism enzyme L-kynureninase is a novel inflammatory factor in psoriasis and other inflammatory diseases, Journal of Allergy and Clinical Immunology, Volume 137 (2016) no. 6, pp. 1830-1840 | DOI

[61] Hung, W.-S.; Ling, P.; Cheng, J.-C.; Chang, S.-S.; Tseng, C.-P. Disabled-2 is a negative immune regulator of lipopolysaccharide-stimulated Toll-like receptor 4 internalization and signaling, Scientific Reports, Volume 6 (2016) no. 1 | DOI

[62] Jablonski, K. A.; Amici, S. A.; Webb, L. M.; Ruiz-Rosado, J. d. D.; Popovich, P. G.; Partida-Sanchez, S.; Guerau-de-Arellano, M. Novel Markers to Delineate Murine M1 and M2 Macrophages, PLOS ONE, Volume 10 (2015) no. 12 | DOI

[63] Jackson, A. P.; Berry, A.; Aslett, M.; Allison, H. C.; Burton, P.; Vavrova-Anderson, J.; Brown, R.; Browne, H.; Corton, N.; Hauser, H.; Gamble, J.; Gilderthorp, R.; Marcello, L.; McQuillan, J.; Otto, T. D.; Quail, M. A.; Sanders, M. J.; van Tonder, A.; Ginger, M. L.; Field, M. C.; Barry, J. D.; Hertz-Fowler, C.; Berriman, M. Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species, Proceedings of the National Academy of Sciences, Volume 109 (2012) no. 9, pp. 3416-3421 | DOI

[64] Joseph, S. B.; Bradley, M. N.; Castrillo, A.; Bruhn, K. W.; Mak, P. A.; Pei, L.; Hogenesch, J.; O'Connell, R. M.; Cheng, G.; Saez, E.; Miller, J. F.; Tontonoz, P. LXR-Dependent Gene Expression Is Important for Macrophage Survival and the Innate Immune Response, Cell, Volume 119 (2004) no. 2, pp. 299-309 | DOI

[65] Kawahara, K.; Hohjoh, H.; Inazumi, T.; Tsuchiya, S.; Sugimoto, Y. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, Volume 1851 (2015) no. 4, pp. 414-421 | DOI

[66] Kay, J. G.; Murray, R. Z.; Pagan, J. K.; Stow, J. L. Cytokine Secretion via Cholesterol-rich Lipid Raft-associated SNAREs at the Phagocytic Cup, Journal of Biological Chemistry, Volume 281 (2006) no. 17, pp. 11949-11954 | DOI

[67] Kemp, S. Why science matters. African cattle in the genomic century, In: The story of cattle in Africa: Why diversity matters eds Dessie T & Mwai O), pp. 268. International Livestock Research Institute, Rural Development Administration of the Republic of Korea and the African Union-InterAfrican, Bureau for Animal Resources, Nairobi, Kenya, 2019

[68] Kierstein, S.; Noyes, H.; Naessens, J.; Nakamura, Y.; Pritchard, C.; Gibson, J.; Kemp, S.; Brass, A. Gene expression profiling in a mouse model for African trypanosomiasis, Genes & Immunity, Volume 7 (2006) no. 8, pp. 667-679 | DOI

[69] Kim, K.; Kwon, T.; Dessie, T.; Yoo, D.; Mwai, O. A.; Jang, J.; Sung, S.; Lee, S.; Salim, B.; Jung, J.; Jeong, H.; Tarekegn, G. M.; Tijjani, A.; Lim, D.; Cho, S.; Oh, S. J.; Lee, H.-K.; Kim, J.; Jeong, C.; Kemp, S.; Hanotte, O.; Kim, H. The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism, Nature Genetics, Volume 52 (2020) no. 10, pp. 1099-1110 | DOI

[70] Kos, J.; Sekirnik, A.; Premzl, A.; Zavašnik Bergant, V.; Langerholc, T.; Repnik, U.; Turk, B.; Werle, B.; Golouh, R.; Jeras, M.; Turk, V. Carboxypeptidases cathepsins X and B display distinct protein profile in human cells and tissues, Experimental Cell Research, Volume 306 (2005) no. 1, pp. 103-113 | DOI

[71] Krämer, A.; Green, J.; Pollard, J.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis, Bioinformatics, Volume 30 (2013) no. 4, pp. 523-530 | DOI

[72] Krishnan, S.; Warke, V. G.; Nambiar, M. P.; Wong, H. K.; Tsokos, G. C.; Farber, D. L. Generation and biochemical analysis of human effector CD4 T cells: alterations in tyrosine phosphorylation and loss of CD3ζ expression, Blood, Volume 97 (2001) no. 12, pp. 3851-3859 | DOI

[73] Kuriakose, S.; Onyilagha, C.; Singh, R.; Olayinka-Adefemi, F.; Jia, P.; Uzonna, J. E. TLR-2 and MyD88-Dependent Activation of MAPK and STAT Proteins Regulates Proinflammatory Cytokine Response and Immunity to Experimental Trypanosoma congolense Infection, Frontiers in Immunology, Volume 10 (2019) | DOI

[74] Le Cao, K.-A.; Rohart, F.; Gonzales, I.; Dejean, S.; Gautier, B.; Bartolo, F.; Monget, P.; Coquery, J.; Yao, F.; Liquet, B. mixOmics: Omics Data Integration Project, Retrieved from R package version 6.1.1, 2016 (https://cran.r-project.org/package=mixOmics)

[75] Lebigot, E.; Brassier, A.; Zater, M.; Imanci, D.; Feillet, F.; Thérond, P.; de Lonlay, P.; Boutron, A. Fructose 1,6-bisphosphatase deficiency: clinical, biochemical and genetic features in French patients, Journal of Inherited Metabolic Disease, Volume 38 (2015) no. 5, pp. 881-887 | DOI

[76] Lejon, V.; Mumba Ngoyi, D.; Kestens, L.; Boel, L.; Barbé, B.; Kande Betu, V.; van Griensven, J.; Bottieau, E.; Muyembe Tamfum, J.-J.; Jacobs, J.; Büscher, P. Gambiense Human African Trypanosomiasis and Immunological Memory: Effect on Phenotypic Lymphocyte Profiles and Humoral Immunity, PLoS Pathogens, Volume 10 (2014) no. 3 | DOI

[77] Leppert, B. J.; Mansfield, J. M.; Paulnock, D. M. The Soluble Variant Surface Glycoprotein of African Trypanosomes Is Recognized by a Macrophage Scavenger Receptor and Induces IκBα Degradation Independently of TRAF6-Mediated TLR Signaling, The Journal of Immunology, Volume 179 (2007) no. 1, pp. 548-556 | DOI

[78] Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools, Bioinformatics, Volume 25 (2009) no. 16, pp. 2078-2079 | DOI

[79] Liao, Y.; Smyth, G. K.; Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, Volume 30 (2013) no. 7, pp. 923-930 | DOI

[80] Liu, Q.; Zheng, J.; Yin, D.-D.; Xiang, J.; He, F.; Wang, Y.-C.; Liang, L.; Qin, H.-Y.; Liu, L.; Liang, Y.-M.; Han, H. Monocyte to macrophage differentiation-associated (MMD) positively regulates ERK and Akt activation and TNF-α and NO production in macrophages, Molecular Biology Reports, Volume 39 (2011) no. 5, pp. 5643-5650 | DOI

[81] Livingstone, C.; Borai, A. Insulin-like growth factor-II: its role in metabolic and endocrine disease, Clinical Endocrinology, Volume 80 (2014) no. 6, pp. 773-781 | DOI

[82] Loftus, R. M.; Finlay, D. K. Immunometabolism: Cellular Metabolism Turns Immune Regulator, Journal of Biological Chemistry, Volume 291 (2016) no. 1, pp. 1-10 | DOI

[83] Loftus, R. T.; Hugh, D. E. M.; Ngere, L. O.; Balain, D. S.; Badi, A. M.; Bradley, D. G.; Cunningham, E. P. Mitochondrial genetic variation in European, African and Indian cattle populations, Animal Genetics, Volume 25 (2009) no. 4, pp. 265-271 | DOI

[84] Magez, S.; Pinto Torres, J. E.; Obishakin, E.; Radwanska, M. Infections With Extracellular Trypanosomes Require Control by Efficient Innate Immune Mechanisms and Can Result in the Destruction of the Mammalian Humoral Immune System, Frontiers in Immunology, Volume 11 (2020) | DOI

[85] Magez, S.; Radwanska, M.; Drennan, M.; Fick, L.; Baral, T. N.; Allie, N.; Jacobs, M.; Nedospasov, S.; Brombacher, F.; Ryffel, B.; Baetselier, P. D. Tumor Necrosis Factor (TNF) Receptor–1 (TNFp55) Signal Transduction and Macrophage‐Derived Soluble TNF Are Crucial for Nitric Oxide–Mediated Trypanosoma congolense Parasite Killing, The Journal of Infectious Diseases, Volume 196 (2007) no. 6, pp. 954-962 | DOI

[86] Magez, S.; Radwanska, M.; Drennan, M.; Fick, L.; Baral, T. N.; Brombacher, F.; Baetselier, P. D. Interferon‐γ and Nitric Oxide in Combination with Antibodies Are Key Protective Host Immune Factors during Trypanosoma congolense Tc13 Infections, The Journal of Infectious Diseases, Volume 193 (2006) no. 11, pp. 1575-1583 | DOI

[87] Martínez-Reyes, I.; Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease, Nature Communications, Volume 11 (2020) no. 1 | DOI

[88] Matthews, K. R.; McCulloch, R.; Morrison, L. J. The within-host dynamics of African trypanosome infections, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 370 (2015) no. 1675 | DOI

[89] Mattioli, R.; Feldmann, U.; Hendrickx, G.; Wint, W.; Jannin, J.; Slingenbergh, J. Tsetse and trypanosomiasis intervention policies supporting sustainable animal-agricultural development, Journal of Food Agriculture & Environment, Volume 2 (2004), pp. 310-314

[90] McCarthy, D. J.; Chen, Y.; Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation, Nucleic Acids Research, Volume 40 (2012) no. 10, pp. 4288-4297 | DOI

[91] McGettrick, A. F.; O'Neill, L. A. How Metabolism Generates Signals during Innate Immunity and Inflammation, Journal of Biological Chemistry, Volume 288 (2013) no. 32, pp. 22893-22898 | DOI

[92] Meade, K. G.; O’Gorman, G. M.; Hill, E. W.; Narciandi, F.; Agaba, M.; Kemp, S. J.; O’Farrelly, C.; MacHugh, D. E. Divergent antimicrobial peptide (AMP) and acute phase protein (APP) responses to Trypanosoma congolense infection in trypanotolerant and trypanosusceptible cattle, Molecular Immunology, Volume 47 (2009) no. 2-3, pp. 196-204 | DOI

[93] Metcalfe, S. M. LIF in the regulation of T-cell fate and as a potential therapeutic, Genes & Immunity, Volume 12 (2011) no. 3, pp. 157-168 | DOI

[94] Meyer, A.; Holt, H. R.; Selby, R.; Guitian, J. Past and Ongoing Tsetse and Animal Trypanosomiasis Control Operations in Five African Countries: A Systematic Review, PLOS Neglected Tropical Diseases, Volume 10 (2016) no. 12 | DOI

[95] Mills, C. D.; Kincaid, K.; Alt, J. M.; Heilman, M. J.; Hill, A. M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm, The Journal of Immunology, Volume 164 (2000) no. 12, pp. 6166-6173 | DOI

[96] Mills, E. L.; Kelly, B.; Logan, A.; Costa, A. S.; Varma, M.; Bryant, C. E.; Tourlomousis, P.; Däbritz, J. H. M.; Gottlieb, E.; Latorre, I.; Corr, S. C.; McManus, G.; Ryan, D.; Jacobs, H. T.; Szibor, M.; Xavier, R. J.; Braun, T.; Frezza, C.; Murphy, M. P.; O’Neill, L. A. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages, Cell, Volume 167 (2016) no. 2 | DOI

[97] Mohr, E.; Cunningham, A. F.; Toellner, K.-M.; Bobat, S.; Coughlan, R. E.; Bird, R. A.; MacLennan, I. C. M.; Serre, K. IFN-γ produced by CD8 T cells induces T-bet–dependent and –independent class switching in B cells in responses to alum-precipitated protein vaccine, Proceedings of the National Academy of Sciences, Volume 107 (2010) no. 40, pp. 17292-17297 | DOI

[98] Morias, Y.; Abels, C.; Laoui, D.; Van Overmeire, E.; Guilliams, M.; Schouppe, E.; Tacke, F.; deVries, C. J.; De Baetselier, P.; Beschin, A. Ly6C- Monocytes Regulate Parasite-Induced Liver Inflammation by Inducing the Differentiation of Pathogenic Ly6C+ Monocytes into Macrophages, PLOS Pathogens, Volume 11 (2015) no. 5 | DOI

[99] Morrison, L. J.; McLellan, S.; Sweeney, L.; Chan, C. N.; MacLeod, A.; Tait, A.; Turner, C. M. R. Role for Parasite Genetic Diversity in Differential Host Responses to Trypanosoma brucei Infection, Infection and Immunity, Volume 78 (2010) no. 3, pp. 1096-1108 | DOI

[100] Morrison, L. J.; Vezza, L.; Rowan, T.; Hope, J. C. Animal African Trypanosomiasis: Time to Increase Focus on Clinically Relevant Parasite and Host Species, Trends in Parasitology, Volume 32 (2016) no. 8, pp. 599-607 | DOI

[101] Murray, M.; Trail, J.; D'ieteren, G. Trypanotolerance in cattle and prospects for the control of trypanosomiasis by selective breeding, Revue Scientifique et Technique de l'OIE, Volume 9 (1990) no. 2, pp. 369-386 | DOI

[102] Murray, M.; Trail, J. C. M.; Davis, C. E.; Black, S. J. Genetic Resistance to African Trypanosomiasis, Journal of Infectious Diseases, Volume 149 (1984) no. 3, pp. 311-319 | DOI

[103] Murray, P. J. Macrophage Polarization, Annual Review of Physiology, Volume 79 (2017) no. 1, pp. 541-566 | DOI

[104] Naessens, J. Bovine trypanotolerance: A natural ability to prevent severe anaemia and haemophagocytic syndrome?, International Journal for Parasitology, Volume 36 (2006) no. 5, pp. 521-528 | DOI

[105] Naessens, J.; Leak, S. G.; Kennedy, D. J.; Kemp, S. J.; Teale, A. J. Responses of bovine chimaeras combining trypanosomosis resistant and susceptible genotypes to experimental infection with Trypanosoma congolense, Veterinary Parasitology, Volume 111 (2003) no. 2-3, pp. 125-142 | DOI

[106] Naessens, J.; Williams, D. J. L. Characterization and measurement of CD5+ B cells in normal andTrypanosoma congolense-infected cattle, European Journal of Immunology, Volume 22 (1992) no. 7, pp. 1713-1718 | DOI

[107] Ndoutamia, G.; Mbakasse, R.; Brahim, A.; Khadidja, A. Influence de la Trypanosomose à T. congolense sur les paramètres hématologiques, minéraux et protéo-énergétiques chez les chèvres sahéliennes du Tchad, Revue Méd. Vét, Volume 153 (2002), pp. 395-400

[108] Ned, R. M.; Swat, W.; Andrews, N. C. Transferrin receptor 1 is differentially required in lymphocyte development, Blood, Volume 102 (2003) no. 10, pp. 3711-3718 | DOI

[109] Noël, W.; Hassanzadeh, G.; Raes, G.; Namangala, B.; Daems, I.; Brys, L.; Brombacher, F.; Baetselier, P. D.; Beschin, A. Infection Stage-Dependent Modulation of Macrophage Activation in Trypanosoma congolense -Resistant and -Susceptible Mice, Infection and Immunity, Volume 70 (2002) no. 11, pp. 6180-6187 | DOI

[110] Nowyhed, H. N.; Huynh, T. R.; Thomas, G. D.; Blatchley, A.; Hedrick, C. C. Cutting Edge: The Orphan Nuclear Receptor Nr4a1 Regulates CD8+ T Cell Expansion and Effector Function through Direct Repression of Irf4, The Journal of Immunology, Volume 195 (2015) no. 8, pp. 3515-3519 | DOI

[111] Noyes, H.; Brass, A.; Obara, I.; Anderson, S.; Archibald, A. L.; Bradley, D. G.; Fisher, P.; Freeman, A.; Gibson, J.; Gicheru, M.; Hall, L.; Hanotte, O.; Hulme, H.; McKeever, D.; Murray, C.; Oh, S. J.; Tate, C.; Smith, K.; Tapio, M.; Wambugu, J.; Williams, D. J.; Agaba, M.; Kemp, S. J. Genetic and expression analysis of cattle identifies candidate genes in pathways responding to Trypanosoma congolense infection, Proceedings of the National Academy of Sciences, Volume 108 (2011) no. 22, pp. 9304-9309 | DOI

[112] O'Gorman, G. M.; Park, S. D.; Hill, E. W.; Meade, K. G.; Coussens, P. M.; Agaba, M.; Naessens, J.; Kemp, S. J.; MacHugh, D. E. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility, BMC Genomics, Volume 10 (2009) no. 1 | DOI

[113] O'Gorman, G. M.; Park, S. D. E.; Hill, E. W.; Meade, K. G.; Mitchell, L. C.; Agaba, M.; Gibson, J. P.; Hanotte, O.; Naessens, J.; Kemp, S. J.; MacHugh, D. E. Cytokine mRNA profiling of peripheral blood mononuclear cells from trypanotolerant and trypanosusceptible cattle infected with Trypanosoma congolense, Physiological Genomics, Volume 28 (2006) no. 1, pp. 53-61 | DOI

[114] O'Neill, L. A. J.; Kishton, R. J.; Rathmell, J. A guide to immunometabolism for immunologists, Nature Reviews Immunology, Volume 16 (2016) no. 9, pp. 553-565 | DOI

[115] O’Rawe, J. A.; Ferson, S.; Lyon, G. J. Accounting for uncertainty in DNA sequencing data, Trends in Genetics, Volume 31 (2015) no. 2, pp. 61-66 | DOI

[116] Obermajer, N.; Repnik, U.; Jevnikar, Z.; Turk, B.; Kreft, M.; Kos, J. Cysteine protease cathepsin X modulates immune response via activation of β 2 integrins, Immunology, Volume 124 (2008) no. 1, pp. 76-88 | DOI

[117] Okwor, I.; Onyilagha, C.; Kuriakose, S.; Mou, Z.; Jia, P.; Uzonna, J. E. Regulatory T Cells Enhance Susceptibility to Experimental Trypanosoma Congolense Infection Independent of Mouse Genetic Background, PLoS Neglected Tropical Diseases, Volume 6 (2012) no. 7 | DOI

[118] Onyilagha, C.; Jia, P.; Jayachandran, N.; Hou, S.; Okwor, I.; Kuriakose, S.; Marshall, A.; Uzonna, J. E. The B Cell Adaptor Molecule Bam32 Is Critically Important for Optimal Antibody Response and Resistance to Trypanosoma congolense Infection in Mice, PLOS Neglected Tropical Diseases, Volume 9 (2015) no. 4 | DOI

[119] Onyilagha, C.; Kuriakose, S.; Ikeogu, N.; Jia, P.; Uzonna, J. Myeloid-Derived Suppressor Cells Contribute to Susceptibility to Trypanosoma congolense Infection by Suppressing CD4+ T Cell Proliferation and IFN-γ Production, The Journal of Immunology, Volume 201 (2018) no. 2, pp. 507-515 | DOI

[120] Paillard, F.; Sterkers, G.; Vaquero, C. Transcriptional and post-transcriptional regulation of TcR, CD4 and CD8 gene expression during activation of normal human T lymphocytes., The EMBO Journal, Volume 9 (1990) no. 6, pp. 1867-1872 | DOI

[121] Payne, W.; Hodges, J. Tropical cattle, origins, breeds and breeding policies, Blackwell Science, Oxford, 1997

[122] Pearce, E. L.; Pearce, E. J. Metabolic Pathways in Immune Cell Activation and Quiescence, Immunity, Volume 38 (2013) no. 4, pp. 633-643 | DOI

[123] Pello, O. M.; De Pizzol, M.; Mirolo, M.; Soucek, L.; Zammataro, L.; Amabile, A.; Doni, A.; Nebuloni, M.; Swigart, L. B.; Evan, G. I.; Mantovani, A.; Locati, M. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology, Blood, Volume 119 (2012) no. 2, pp. 411-421 | DOI

[124] Pierre, C. L'élevage en Afrique occidentale française, Gouvernement général de l'Afrique occidentale française, Inspection de l'agriculture, Paris, 1906

[125] Pinder, M.; Bauer, J.; Van Melick, A.; Fumoux, F. Immune responses of trypanoresistant and trypanosusceptible cattle after cyclic infection with Trypanosoma congolense, Veterinary Immunology and Immunopathology, Volume 18 (1988) no. 3, pp. 245-257 | DOI

[126] Rajavel, A.; Heinrich, F.; Schmitt, A. O.; Gültas, M. Identifying Cattle Breed-Specific Partner Choice of Transcription Factors during the African Trypanosomiasis Disease Progression Using Bioinformatics Analysis, Vaccines, Volume 8 (2020) no. 2 | DOI

[127] Team RC R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2018 (http://www.R-project.org/)

[128] Rege, J. The state of African cattle genetic resources I. Classification framework and identification of threatened and extinct breeds, AGRI, Volume 25 (1999), pp. 1-25

[129] Risco, A.; del Fresno, C.; Mambol, A.; Alsina-Beauchamp, D.; MacKenzie, K. F.; Yang, H.-T.; Barber, D. F.; Morcelle, C.; Arthur, J. S. C.; Ley, S. C.; Ardavin, C.; Cuenda, A. p38γ and p38δ kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation, Proceedings of the National Academy of Sciences, Volume 109 (2012) no. 28, pp. 11200-11205 | DOI

[130] Ritchie, M. E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C. W.; Shi, W.; Smyth, G. K. limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, Volume 43 (2015) no. 7 | DOI

[131] Roberts, C. J.; Gray, A. R. Studies on Trypanosome-resistant cattle. II. The effect of Trypanosomiasis on N'dama, Muturu and Zebu cattle, Tropical Animal Health and Production, Volume 5 (1973) no. 4, pp. 220-233 | DOI

[132] Robinson, M. D.; McCarthy, D. J.; Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, Volume 26 (2009) no. 1, pp. 139-140 | DOI

[133] Schulman, I. G. Liver X receptors link lipid metabolism and inflammation, FEBS Letters, Volume 591 (2017) no. 19, pp. 2978-2991 | DOI

[134] Seck, M.; Bouyer, J.; Sall, B.; Bengaly, Z.; Vreysen, M. The prevalence of African animal trypanosomoses and tsetse presence in Western Senegal, Parasite, Volume 17 (2010) no. 3, pp. 257-265 | DOI

[135] Sileghem, M.; Norman Flynn, J. Suppression of interleukin 2 secretion and interleukin 2 receptor expression during tsetse-transmitted trypanosomiasis in cattle, European Journal of Immunology, Volume 22 (1992) no. 3, pp. 767-773 | DOI

[136] Sileghem, M.; Flynn, J. N. Suppression of T-Cell Responsiveness during Tsetse-Transmitted Trypanosomiasis in Cattle, Scandinavian Journal of Immunology, Volume 36 (1992) no. s1, pp. 37-40 | DOI

[137] Sileghem, M. R.; Norman Flynn, J.; Saya, R.; Williams, D. J. Secretion of co-stimulatory cytokines by monocytes and macrophages during infection with Trypanosoma (Nannomonas) congolense in susceptible and tolerant cattle, Veterinary Immunology and Immunopathology, Volume 37 (1993) no. 2, pp. 123-134 | DOI

[138] Swallow, B. Impacts of Trypanosomiasis on African agriculture, PAAT Technical and scientific series 2. FAO (Food and Agricultural Organization of the United Nations), Rome, Italy, 2000

[139] Taiwo, V.; Anosa, V. In vitro erythrophagocytosis by cultured macrophages stimulated with extraneous substances and those isolated from the blood, spleen and bone marrow of Boran and N'Dama cattle infected with Trypanosoma congolense and Trypanosmoa vivax, Onderstepoort Journal of Veterinary Research, Volume 67 (2000), pp. 273-287

[140] Taylor, K. Immune responses of cattle to African trypanosomes: protective or pathogenic?, International Journal for Parasitology, Volume 28 (1998) no. 2, pp. 219-240 | DOI

[141] Taylor, K. A.; Lutje, V.; Kennedy, D.; Authié, E.; Boulangé, A.; Logan-Henfrey, L.; Gichuki, B.; Gettinby, G. Trypanosoma congolense:B-Lymphocyte Responses Differ between Trypanotolerant and Trypanosusceptible Cattle, Experimental Parasitology, Volume 83 (1996) no. 1, pp. 106-116 | DOI

[142] Taylor, K.; Mertens, B. Immune response of cattle infected with African trypanosomes, Mem Inst Oswaldo Cruz, Volume 94 (1999), pp. 239-244

[143] Trail, J.; d'Ieteren, G.; Maille, J.; Yangari, G. Genetic aspects of control of anaemia development in trypanotolerant N'Dama cattle, Acta Tropica, Volume 48 (1991) no. 4, pp. 285-291 | DOI

[144] Trail, J.; Wissocq, N.; d'Ieteren, G.; Kakiese, O.; Murray, M. Quantitative phenotyping of N'Dama cattle for aspects of trypanotolerance under field tsetse challenge, Veterinary Parasitology, Volume 55 (1994) no. 3, pp. 185-195 | DOI

[145] Traore-Leroux, T.; Fumoux, F.; Pinder, M. High density lipoprotein levels in the serum of trypanosensitive and trypanoresistant cattle. Changes during Trypanosoma congolense infection, Acta Trop, Volume 44 (1987), pp. 315-323

[146] Uilenberg, G. A field guide for the diagnosis, treatment and prevention of African animal trypanosmosis, FAO, Rome, 1998

[147] Uzonna, J.; Kaushik, R.; Zhang, Y.; Gordon, J.; Tabel, H. Experimental murine Trypanosoma congolense infections. II. Role of splenic adherent CD3+Thy1.2+ TCR-alpha beta- gamma delta- CD4+8- and CD3+Thy1.2+ TCR-alpha beta- gamma delta- CD4-8- cells in the production of IL-4, IL-10, and IFN-gamma and in trypanosome-elicited immunosuppression, J Immunol, Volume 161, 1998, pp. 6189-6197

[148] van de Laar, L.; Coffer, P. J.; Woltman, A. M. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy, Blood, Volume 119 (2012) no. 15, pp. 3383-3393 | DOI

[149] van der Waaij, E.; Hanotte, O.; van Arendonk, J.; Kemp, S.; Kennedy, D.; Gibson, J.; Teale, A. Population parameters for traits defining trypanotolerance in an F2 cross of N’Dama and Boran cattle, Livestock Production Science, Volume 84 (2003) no. 3, pp. 219-230 | DOI

[150] Vincendeau, P.; Bouteille, B. Immunology and immunopathology of African trypanosomiasis, Anais da Academia Brasileira de Ciências, Volume 78 (2006) no. 4, pp. 645-665 | DOI

[151] Vulcano, M.; Albanesi, C.; Stoppacciaro, A.; Bagnati, R.; D'Amico, G.; Struyf, S.; Transidico, P.; Bonecchi, R.; Del Prete, A.; Allavena, P.; Ruco, L. P.; Chiabrando, C.; Girolomoni, G.; Mantovani, A.; Sozzani, S. Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo, European Journal of Immunology, Volume 31 (2001) no. 3, pp. 812-822 | DOI

[152] Wang, L.-M.; Zhang, Y.; Li, X.; Zhang, M.-L.; Zhu, L.; Zhang, G.-X.; Xu, Y.-M. Nr4a1 plays a crucial modulatory role in Th1/Th17 cell responses and CNS autoimmunity, Brain, Behavior, and Immunity, Volume 68 (2018), pp. 44-55 | DOI

[153] Wang, R.; Dillon, C. P.; Shi, L. Z.; Milasta, S.; Carter, R.; Finkelstein, D.; McCormick, L. L.; Fitzgerald, P.; Chi, H.; Munger, J.; Green, D. R. The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation, Immunity, Volume 35 (2011) no. 6, pp. 871-882 | DOI

[154] Whitehead, A.; Crawford, D. L. Neutral and adaptive variation in gene expression, Proceedings of the National Academy of Sciences, Volume 103 (2006) no. 14, pp. 5425-5430 | DOI

[155] Wickham, H. ggplot2: Elegant graphics for data analysis, Springer International Publishing, New-York, 2016

[156] Wilson, K. C.; Center, D. M.; Cruikshank, W. W. Mini ReviewThe Effect of Interleukin-16 and its Precursor on T Lymphocyte Activation and Growth, Growth Factors, Volume 22 (2009) no. 2, pp. 97-104 | DOI

[157] Xu, J.; Flaczyk, A.; Neal, L. M.; Fa, Z.; Eastman, A. J.; Malachowski, A. N.; Cheng, D.; Moore, B. B.; Curtis, J. L.; Osterholzer, J. J.; Olszewski, M. A. Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection, The Journal of Immunology, Volume 198 (2017) no. 9, pp. 3548-3557 | DOI

[158] Yoon, M.-S. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling, Nutrients, Volume 9 (2017) no. 11 | DOI

[159] Zamboni, D. S.; Lima-Junior, D. S. Inflammasomes in host response to protozoan parasites, Immunological Reviews, Volume 265 (2015) no. 1, pp. 156-171 | DOI

[160] Zoldan, K.; Moellmer, T.; Schneider, J.; Fueldner, C.; Knauer, J.; Lehmann, J. Increase of CD25 expression on bovine neutrophils correlates with disease severity in post-partum and early lactating dairy cows, Developmental & Comparative Immunology, Volume 47 (2014) no. 2, pp. 254-263 | DOI

Cited by Sources: