Section: Infections
Topic: Biology of interactions, Microbiology

Three-way relationships between gut microbiota, helminth assemblages and bacterial infections in wild rodent populations

10.24072/pcjournal.243 - Peer Community Journal, Volume 3 (2023), article no. e18.

Get full text PDF Peer reviewed and recommended by PCI
article image

Despite its central role in host fitness, the gut microbiota may differ greatly between individuals. This variability is often mediated by environmental or host factors such as diet, genetics, and infections. Recently, particular attention has been given to the interactions between gut bacteriota and helminths, as these latter could affect host susceptibility to other infections. Further studies are still required to better understand the three-way interactions between gut bacteriota, helminths and other parasites, especially because previous findings have been very variable, even for comparable host-parasite systems. In our study, we used the V4 region of the 16S rRNA gene to assess the variability of gut bacteriota diversity and composition in wild populations of a small mammal, the bank vole Myodes glareolus. Four sites were sampled at a regional geographical scale (100 km) along a North-South transect in Eastern France. We applied analyses of community and microbial ecology to evaluate the interactions between the gut bacteriota, the gastro-intestinal helminths and the pathogenic bacteria detected in the spleen. We identified important variations of the gut bacteriota composition and diversity among bank voles. They were mainly explained by sampling localities and reflected the North/South sampling transect. In addition, we detected two main enterotypes, that might correspond to contrasted diets. We found geographic variations of the Firmicutes/Bacteroidetes ratio, that correlated positively with body mass index. We found positive correlations between the specific richness of the gut bacteriota and of the helminth community, as well as between the composition of these two communities, even when accounting for the influence of geographical distance. The helminths Aonchotheca murissylvatici, Heligmosomum mixtum and  the bacteria Bartonella sp were the main taxa associated with the whole gut bacteriota composition. Besides, changes in the relative abundance of particular gut bacteriota taxa were specifically associated with other helminths (Mastophorus muris, Catenotaenia henttoneni, Paranoplocephala omphalodes and Trichuris arvicolae) or pathogenic bacteria. Especially, infections with Neoehrlichia mikurensis, Orientia sp, Rickettsia sp and P. omphalodes were associated with lower relative abundance of the family Erysipelotrichaceae (Firmicutes), while coinfections with higher number of bacterial infections were associated with lower relative abundance of a Bacteroidales family (Bacteroidetes). These results emphasize complex interlinkages between gut bacteriota and infections in wild animal populations. They remain difficult to generalize due to the strong impact of the environment on these interactions, even at regional geographical scales. Abiotic features, as well as small mammal community composition and within host parasite coinfections, should now be considered to better understand the spatial variations observed in the relationships between gut bacteriota, gastro-intestinal helminths and bacterial infections.

Published online:
DOI: 10.24072/pcjournal.243
Type: Research article

Bouilloud, Marie 1, 2; Galan, Maxime 1; Dubois, Adelaide 1; Diagne, Christophe 3; Marianneau, Philippe 4; Roche, Benjamin 2; Charbonnel, Nathalie 1

1 CBGP, INRAE, CIRAD, Institut Agro, IRD, University of Montpellier, Montpellier, France
2 MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
3 CBGP, IRD, INRAE, CIRAD, Institut Agro, University of Montpellier, Montpellier, France
4 INRAE, Lyon, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Bouilloud, Marie and Galan, Maxime and Dubois, Adelaide and Diagne, Christophe and Marianneau, Philippe and Roche, Benjamin and Charbonnel, Nathalie},
     title = {Three-way relationships between gut microbiota, helminth assemblages and bacterial infections in wild rodent populations},
     journal = {Peer Community Journal},
     eid = {e18},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.243},
     url = {}
AU  - Bouilloud, Marie
AU  - Galan, Maxime
AU  - Dubois, Adelaide
AU  - Diagne, Christophe
AU  - Marianneau, Philippe
AU  - Roche, Benjamin
AU  - Charbonnel, Nathalie
TI  - Three-way relationships between gut microbiota, helminth assemblages and bacterial infections in wild rodent populations
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.243
ID  - 10_24072_pcjournal_243
ER  - 
%0 Journal Article
%A Bouilloud, Marie
%A Galan, Maxime
%A Dubois, Adelaide
%A Diagne, Christophe
%A Marianneau, Philippe
%A Roche, Benjamin
%A Charbonnel, Nathalie
%T Three-way relationships between gut microbiota, helminth assemblages and bacterial infections in wild rodent populations
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.243
%F 10_24072_pcjournal_243
Bouilloud, Marie; Galan, Maxime; Dubois, Adelaide; Diagne, Christophe; Marianneau, Philippe; Roche, Benjamin; Charbonnel, Nathalie. Three-way relationships between gut microbiota, helminth assemblages and bacterial infections in wild rodent populations. Peer Community Journal, Volume 3 (2023), article  no. e18. doi : 10.24072/pcjournal.243.

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.infections.106000

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Abbate, J. L.; Galan, M.; Razzauti, M.; Sironen, T.; Voutilainen, L.; Henttonen, H.; Gasqui, P.; Cosson, J.-F.; Charbonnel, N. Pathogen community composition and co-infection patterns in a wild community of rodents, bioRxiv, 2020 | DOI

[2] Adair, K. L.; Douglas, A. E. Making a microbiome: the many determinants of host-associated microbial community composition, Current Opinion in Microbiology, Volume 35 (2017), pp. 23-29 | DOI

[3] Alabí, A. S.; Monti, G.; Otth, C.; Sepulveda-García, P.; Sánchez-Hidalgo, M.; de Mello, V. V. C.; Machado, R. Z.; André, M. R.; Bittencourt, P.; Müller, A. Molecular Survey and Genetic Diversity of Hemoplasmas in Rodents from Chile, Microorganisms, Volume 8 (2020) no. 10 | DOI

[4] Anderson, R. C.; Chabaud, A. G.; Willmott, S. Keys to the nematode parasites of vertebrates: archival volume, CABI, UK, 2009 | DOI

[5] Arboleya, S.; Watkins, C.; Stanton, C.; Ross, R. P. Gut Bifidobacteria Populations in Human Health and Aging, Frontiers in Microbiology, Volume 7 (2016) | DOI

[6] Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D. R.; Fernandes, G. R.; Tap, J.; Bruls, T.; Batto, J.-M.; Bertalan, M.; Borruel, N.; Casellas, F.; Fernandez, L.; Gautier, L.; Hansen, T.; Hattori, M.; Hayashi, T.; Kleerebezem, M.; Kurokawa, K.; Leclerc, M.; Levenez, F.; Manichanh, C.; Nielsen, H. B.; Nielsen, T.; Pons, N.; Poulain, J.; Qin, J.; Sicheritz-Ponten, T.; Tims, S.; Torrents, D.; Ugarte, E.; Zoetendal, E. G.; Wang, J.; Guarner, F.; Pedersen, O.; de Vos, W. M.; Brunak, S.; Doré, J.; Weissenbach, J.; Ehrlich, S. D.; Bork, P. Enterotypes of the human gut microbiome, Nature, Volume 473 (2011) no. 7346, pp. 174-180 | DOI

[7] Belkaid, Y.; Hand, T. W. Role of the Microbiota in Immunity and Inflammation, Cell, Volume 157 (2014) no. 1, pp. 121-141 | DOI

[8] Bowerman, K. L.; Knowles, S. C. L.; Bradley, J. E.; Baltrūnaitė, L.; Lynch, M. D. J.; Jones, K. M.; Hugenholtz, P. Effects of laboratory domestication on the rodent gut microbiome, ISME Communications, Volume 1 (2021) no. 1 | DOI

[9] Bouilloud, M.; Galan, M.; Dubois, A.; et al. Data from: Small-scale geographical variation of three-way relationships between gut microbiota, helminth assemblages and bacterial infections in wild rodent populations, Zenodo, 2022 | DOI

[10] Bouilloud, M.; Galan, M.; Diagne, C.; et al. Supplementary materials. Publication "Three-way relationships between gut microbiota, helminth assemblages and bacterial infections in wild rodent populations" by Bouilloud et al. [Data set], Zenodo | DOI

[11] Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T. L. BLAST+: architecture and applications, BMC Bioinformatics, Volume 10 (2009) no. 1 | DOI

[12] Clemente, J. C.; Ursell, L. K.; Parfrey, L. W.; Knight, R. The Impact of the Gut Microbiota on Human Health: An Integrative View, Cell, Volume 148 (2012) no. 6, pp. 1258-1270 | DOI

[13] Cortés, A.; Peachey, L. E.; Jenkins, T. P.; Scotti, R.; Cantacessi, C. Helminths and microbes within the vertebrate gut – not all studies are created equal, Parasitology, Volume 146 (2019) no. 11, pp. 1371-1378 | DOI

[14] Deng, H.; Le Rhun, D.; Buffet, J.-P. R.; Cotté, V.; Read, A.; Birtles, R. J.; Vayssier-Taussat, M. Strategies of exploitation of mammalian reservoirs by Bartonella species, Veterinary Research, Volume 43 (2012) no. 1 | DOI

[15] Diagne, C. A.; Charbonnel, N.; Henttonen, H.; Sironen, T.; Brouat, C. Serological Survey of Zoonotic Viruses in Invasive and Native Commensal Rodents in Senegal, West Africa, Vector-Borne and Zoonotic Diseases, Volume 17 (2017) no. 10, pp. 730-733 | DOI

[16] Dubois, A.; Castel, G.; Murri, S.; Pulido, C.; Pons, J.-B.; Benoit, L.; Loiseau, A.; Lakhdar, L.; Galan, M.; Marianneau, P.; Charbonnel, N. Bank vole immunoheterogeneity may limit Nephropatia Epidemica emergence in a French non-endemic region, Parasitology, Volume 145 (2017) no. 3, pp. 393-407 | DOI

[17] Ecke, F.; Berglund, Å. M.; Rodushkin, I.; Engström, E.; Pallavicini, N.; Sörlin, D.; Nyholm, E.; Hörnfeldt, B. Seasonal shift of diet in bank voles explains trophic fate of anthropogenic osmium?, Science of The Total Environment, Volume 624 (2018), pp. 1634-1639 | DOI

[18] Escudié, F.; Auer, L.; Bernard, M.; Mariadassou, M.; Cauquil, L.; Vidal, K.; Maman, S.; Hernandez-Raquet, G.; Combes, S.; Pascal, G. FROGS: Find, Rapidly, OTUs with Galaxy Solution, Bioinformatics, Volume 34 (2017) no. 8, pp. 1287-1294 | DOI

[19] Galan, M.; Razzauti, M.; Bard, E.; Bernard, M.; Brouat, C.; Charbonnel, N.; Dehne-Garcia, A.; Loiseau, A.; Tatard, C.; Tamisier, L.; Vayssier-Taussat, M.; Vignes, H.; Cosson, J.-F. 16S rRNA Amplicon Sequencing for Epidemiological Surveys of Bacteria in Wildlife, mSystems, Volume 1 (2016) no. 4 | DOI

[20] Glendinning, L.; Nausch, N.; Free, A.; Taylor, D. W.; Mutapi, F. The microbiota and helminths: sharing the same niche in the human host, Parasitology, Volume 141 (2014) no. 10, pp. 1255-1271 | DOI

[21] Goertz, S.; de Menezes, A. B.; Birtles, R. J.; Fenn, J.; Lowe, A. E.; MacColl, A. D. C.; Poulin, B.; Young, S.; Bradley, J. E.; Taylor, C. H. Geographical location influences the composition of the gut microbiota in wild house mice (Mus musculus domesticus) at a fine spatial scale, PLOS ONE, Volume 14 (2019) no. 9 | DOI

[22] Graham, A. L. Ecological rules governing helminth–microparasite coinfection, Proceedings of the National Academy of Sciences, Volume 105 (2008) no. 2, pp. 566-570 | DOI

[23] Haegeman, B.; Hamelin, J.; Moriarty, J.; Neal, P.; Dushoff, J.; Weitz, J. S. Robust estimation of microbial diversity in theory and in practice, The ISME Journal, Volume 7 (2013) no. 6, pp. 1092-1101 | DOI

[24] Hakansson, A.; Molin, G. Gut Microbiota and Inflammation, Nutrients, Volume 3 (2011) no. 6, pp. 637-682 | DOI

[25] Haukisalmi, V.; Henttonen, H. Coexistence in Helminths of the Bank Vole Clethrionomys glareolus. I. Patterns of Co-Occurrence, The Journal of Animal Ecology, Volume 62 (1993) no. 2 | DOI

[26] Hoarau, A. O. G.; Mavingui, P.; Lebarbenchon, C. Coinfections in wildlife: Focus on a neglected aspect of infectious disease epidemiology, PLOS Pathogens, Volume 16 (2020) no. 9 | DOI

[27] Holmes, I.; Harris, K.; Quince, C. Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics, PLoS ONE, Volume 7 (2012) no. 2 | DOI

[28] Honda, K.; Littman, D. R. The microbiota in adaptive immune homeostasis and disease, Nature, Volume 535 (2016) no. 7610, pp. 75-84 | DOI

[29] Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models, Biometrical Journal, Volume 50 (2008) no. 3, pp. 346-363 | DOI

[30] Hu, H.; Shao, W.; Liu, Q.; Liu, N.; Wang, Q.; Xu, J.; Zhang, X.; Weng, Z.; Lu, Q.; Jiao, L.; Chen, C.; Sun, H.; Jiang, Z.; Zhang, X.; Gu, A. Gut microbiota promotes cholesterol gallstone formation by modulating bile acid composition and biliary cholesterol secretion, Nature Communications, Volume 13 (2022) no. 1 | DOI

[31] Johnson, J. B.; Omland, K. S. Model selection in ecology and evolution, Trends in Ecology & Evolution, Volume 19 (2004) no. 2, pp. 101-108 | DOI

[32] Johnson, P. T. J.; de Roode, J. C.; Fenton, A. Why infectious disease research needs community ecology, Science, Volume 349 (2015) no. 6252 | DOI

[33] Kaakoush, N. O. Insights into the Role of Erysipelotrichaceae in the Human Host, Frontiers in Cellular and Infection Microbiology, Volume 5 (2015) | DOI

[34] Kamada, N.; Chen, G. Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota, Nature Immunology, Volume 14 (2013) no. 7, pp. 685-690 | DOI

[35] Karst, S. M.; Wobus, C. E. Editorial overview: Viruses and the microbiome, Current Opinion in Virology, Volume 37 (2019) | DOI

[36] Khalil, L. F.; Jones, A.; Bray, R. A. Keys to the Cestode Parasite of Vertebrates, CABI, GB, 1994 | DOI

[37] Khosravi, A.; Mazmanian, S. K. Disruption of the gut microbiome as a risk factor for microbial infections, Current Opinion in Microbiology, Volume 16 (2013) no. 2, pp. 221-227 | DOI

[38] Kim, C. H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids, Cellular & Molecular Immunology, Volume 18 (2021) no. 5, pp. 1161-1171 | DOI

[39] Knowles, S. C. L.; Eccles, R. M.; Baltrūnaitė, L. Species identity dominates over environment in shaping the microbiota of small mammals, Ecology Letters, Volume 22 (2019) no. 5, pp. 826-837 | DOI

[40] Kolodny, O.; Schulenburg, H. Microbiome-mediated plasticity directs host evolution along several distinct time scales, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 375 (2020) no. 1808 | DOI

[41] Kozich, J. J.; Westcott, S. L.; Baxter, N. T.; Highlander, S. K.; Schloss, P. D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform, Applied and Environmental Microbiology, Volume 79 (2013) no. 17, pp. 5112-5120 | DOI

[42] Kreisinger, J.; Bastien, G.; Hauffe, H. C.; Marchesi, J.; Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 370 (2015) no. 1675 | DOI

[43] Lahti, L.; Shetty, S. microbiome R package, Bioconductor, 2017 | DOI

[44] Lawson, M. A. E.; Roberts, I. S.; Grencis, R. K. The interplay between Trichuris and the microbiota, Parasitology, Volume 148 (2021) no. 14, pp. 1806-1813 | DOI

[45] Lavrinienko, A.; Mappes, T.; Tukalenko, E.; Mousseau, T. A.; Møller, A. P.; Knight, R.; Morton, J. T.; Thompson, L. R.; Watts, P. C. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus, The ISME Journal, Volume 12 (2018) no. 11, pp. 2801-2806 | DOI

[46] Lei, B. R.; Olival, K. J. Contrasting Patterns in Mammal–Bacteria Coevolution: Bartonella and Leptospira in Bats and Rodents, PLoS Neglected Tropical Diseases, Volume 8 (2014) no. 3 | DOI

[47] Leung, J. M.; Graham, A. L.; Knowles, S. C. L. Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens, Frontiers in Microbiology, Volume 9 (2018) | DOI

[48] Ley, R. E.; Hamady, M.; Lozupone, C.; Turnbaugh, P. J.; Ramey, R. R.; Bircher, J. S.; Schlegel, M. L.; Tucker, T. A.; Schrenzel, M. D.; Knight, R.; Gordon, J. I. Evolution of Mammals and Their Gut Microbes, Science, Volume 320 (2008) no. 5883, pp. 1647-1651 | DOI

[49] Li, H.; Li, T.; Beasley, D. E.; Heděnec, P.; Xiao, Z.; Zhang, S.; Li, J.; Lin, Q.; Li, X. Diet Diversity Is Associated with Beta but not Alpha Diversity of Pika Gut Microbiota, Frontiers in Microbiology, Volume 7 (2016) | DOI

[50] Linnenbrink, M.; Wang, J.; Hardouin, E. A.; Künzel, S.; Metzler, D.; Baines, J. F. The role of biogeography in shaping diversity of the intestinal microbiota in house mice, Molecular Ecology, Volume 22 (2013) no. 7, pp. 1904-1916 | DOI

[51] Loke, P.; Lim, Y. A. L. Helminths and the microbiota: parts of the hygiene hypothesis, Parasite Immunology, Volume 37 (2015) no. 6, pp. 314-323 | DOI

[52] Lopetuso, L. R.; Scaldaferri, F.; Petito, V.; Gasbarrini, A. Commensal Clostridia: leading players in the maintenance of gut homeostasis, Gut Pathogens, Volume 5 (2013) no. 1 | DOI

[53] Magoč, T.; Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, Volume 27 (2011) no. 21, pp. 2957-2963 | DOI

[54] Mahé, F.; Rognes, T.; Quince, C.; de Vargas, C.; Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies, PeerJ, Volume 2 (2014) | DOI

[55] Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, Volume 17 (2011) no. 1 | DOI

[56] Maurice, C. F.; CL Knowles, S.; Ladau, J.; Pollard, K. S.; Fenton, A.; Pedersen, A. B.; Turnbaugh, P. J. Marked seasonal variation in the wild mouse gut microbiota, The ISME Journal, Volume 9 (2015) no. 11, pp. 2423-2434 | DOI

[57] McDonald, J. E.; Marchesi, J. R.; Koskella, B. Application of ecological and evolutionary theory to microbiome community dynamics across systems, Proceedings of the Royal Society B: Biological Sciences, Volume 287 (2020) no. 1941 | DOI

[58] McKee, C. D.; Bai, Y.; Webb, C. T.; Kosoy, M. Y. Bats are key hosts in the radiation of mammal-associated Bartonella bacteria, Infection, Genetics and Evolution, Volume 89 (2021) | DOI

[59] McKnight, D. T.; Huerlimann, R.; Bower, D. S.; Schwarzkopf, L.; Alford, R. A.; Zenger, K. R. Methods for normalizing microbiome data: An ecological perspective, Methods in Ecology and Evolution, Volume 10 (2018) no. 3, pp. 389-400 | DOI

[60] McMurdie, P. J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data, PLoS ONE, Volume 8 (2013) no. 4 | DOI

[61] Mills, J. N.; Childs, J.; Ksiazek, T. G.; et al. Methods for trapping and sampling small mammals for virologic testing, Centers for Disease Control and Prevention. Atlanta, 1995

[62] Montgomery, S. S. J.; Montgomery, W. I. Spatial and temporal variation in the infracommunity structure of helminths of Apodemus sylvaticus (Rodentia: Muridae), Parasitology, Volume 98 (1989) no. 1, pp. 145-150 | DOI

[63] Moran, N. A.; Ochman, H.; Hammer, T. J. Evolutionary and Ecological Consequences of Gut Microbial Communities, Annual Review of Ecology, Evolution, and Systematics, Volume 50 (2019) no. 1, pp. 451-475 | DOI

[64] Morgan, M. Dirichlet-multinomial mixture model machine learning for microbiome data, 2021 (

[65] Mutapi, F. The gut microbiome in the helminth infected host, Trends in Parasitology, Volume 31 (2015) no. 9, pp. 405-406 | DOI

[66] Oksanen, J.; Blanchet, F. G.; Friendly, M.; et al. vegan: Community Ecology Package., 2020 (

[67] Pascoe, E. L.; Hauffe, H. C.; Marchesi, J. R.; Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies, The ISME Journal, Volume 11 (2017) no. 12, pp. 2644-2651 | DOI

[68] Peachey, L. E.; Jenkins, T. P.; Cantacessi, C. This Gut Ain’t Big Enough for Both of Us. Or Is It? Helminth–Microbiota Interactions in Veterinary Species, Trends in Parasitology, Volume 33 (2017) no. 8, pp. 619-632 | DOI

[69] Pfeiffer, J. K.; Sonnenburg, J. L. The Intestinal Microbiota and Viral Susceptibility, Frontiers in Microbiology, Volume 2 (2011) | DOI

[70] Reese, A. T.; Dunn, R. R. Drivers of Microbiome Biodiversity: A Review of General Rules, Feces, and Ignorance, mBio, Volume 9 (2018) no. 4 | DOI

[71] Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things), Methods in Ecology and Evolution, Volume 3 (2011) no. 2, pp. 217-223 | DOI

[72] Reynolds, L. A.; Smith, K. A.; Filbey, K. J.; Harcus, Y.; Hewitson, J. P.; Redpath, S. A.; Valdez, Y.; Yebra, M. J.; Finlay, B. B.; Maizels, R. M. Commensal-pathogen interactions in the intestinal tract, Gut Microbes, Volume 5 (2014) no. 4, pp. 522-532 | DOI

[73] Ribas Salvador, A.; Guivier, E.; Xuéreb, A.; Chaval, Y.; Cadet, P.; Poulle, M.-L.; Sironen, T.; Voutilainen, L.; Henttonen, H.; Cosson, J.-F.; Charbonnel, N. Concomitant influence of helminth infection and landscape on the distribution of Puumala hantavirus in its reservoir, Myodes glareolus, BMC Microbiology, Volume 11 (2011) no. 1 | DOI

[74] Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.; Gasbarrini, A.; Mele, M. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases, Microorganisms, Volume 7 (2019) no. 1 | DOI

[75] Rodríguez-Daza, M.-C.; Roquim, M.; Dudonné, S.; Pilon, G.; Levy, E.; Marette, A.; Roy, D.; Desjardins, Y. Berry Polyphenols and Fibers Modulate Distinct Microbial Metabolic Functions and Gut Microbiota Enterotype-Like Clustering in Obese Mice, Frontiers in Microbiology, Volume 11 (2020) | DOI

[76] Rolhion, N.; Chassaing, B. When pathogenic bacteria meet the intestinal microbiota, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 371 (2016) no. 1707 | DOI

[77] Rosenfeld, C. S. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures, Frontiers in Cellular and Infection Microbiology, Volume 7 (2017) | DOI

[78] Rosshart, S. P.; Vassallo, B. G.; Angeletti, D.; Hutchinson, D. S.; Morgan, A. P.; Takeda, K.; Hickman, H. D.; McCulloch, J. A.; Badger, J. H.; Ajami, N. J.; Trinchieri, G.; Pardo-Manuel de Villena, F.; Yewdell, J. W.; Rehermann, B. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance, Cell, Volume 171 (2017) no. 5 | DOI

[79] Round, J. L.; Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease, Nature Reviews Immunology, Volume 9 (2009) no. 5, pp. 313-323 | DOI

[80] Sabey, K. A.; Song, S. J.; Jolles, A.; Knight, R.; Ezenwa, V. O. Coinfection and infection duration shape how pathogens affect the African buffalo gut microbiota, The ISME Journal, Volume 15 (2020) no. 5, pp. 1359-1371 | DOI

[81] Salter, S. J.; Cox, M. J.; Turek, E. M.; Calus, S. T.; Cookson, W. O.; Moffatt, M. F.; Turner, P.; Parkhill, J.; Loman, N. J.; Walker, A. W. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses, BMC Biology, Volume 12 (2014) no. 1 | DOI

[82] Seguel, M.; Gottdenker, N. The diversity and impact of hookworm infections in wildlife, International Journal for Parasitology: Parasites and Wildlife, Volume 6 (2017) no. 3, pp. 177-194 | DOI

[83] Stothart, M. R.; Palme, R.; Newman, A. E. M. It's what's on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal, Proceedings of the Royal Society B: Biological Sciences, Volume 286 (2019) no. 1913 | DOI

[84] Suzuki, T. A.; Nachman, M. W. Spatial Heterogeneity of Gut Microbial Composition along the Gastrointestinal Tract in Natural Populations of House Mice, PLOS ONE, Volume 11 (2016) no. 9 | DOI

[85] R team R. A language and environment for statistical computing, R core team Austria, Vienna, 2020

[86] Telfer, S.; Lambin, X.; Birtles, R.; Beldomenico, P.; Burthe, S.; Paterson, S.; Begon, M. Species Interactions in a Parasite Community Drive Infection Risk in a Wildlife Population, Science, Volume 330 (2010) no. 6001, pp. 243-246 | DOI

[87] Trevelline, B. K.; Fontaine, S. S.; Hartup, B. K.; Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices, Proceedings of the Royal Society B: Biological Sciences, Volume 286 (2019) no. 1895 | DOI

[88] Vujkovic-Cvijin, I.; Sklar, J.; Jiang, L.; Natarajan, L.; Knight, R.; Belkaid, Y. Host variables confound gut microbiota studies of human disease, Nature, Volume 587 (2020) no. 7834, pp. 448-454 | DOI

[89] Wang, J.; Linnenbrink, M.; Künzel, S.; Fernandes, R.; Nadeau, M.-J.; Rosenstiel, P.; Baines, J. F. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 26 | DOI

[90] Winkler, E. S.; Thackray, L. B. A long-distance relationship: the commensal gut microbiota and systemic viruses, Current Opinion in Virology, Volume 37 (2019), pp. 44-51 | DOI

[91] Wolf, J. F.; Kriss, K. D.; MacAulay, K. M.; Munro, K.; Patterson, B. R.; Shafer, A. B. A. Gut microbiome composition predicts summer core range size in two divergent ungulates, FEMS Microbiology Ecology, Volume 97 (2021) no. 5 | DOI

[92] Worsley, S. F.; Davies, C. S.; Mannarelli, M.-E.; Hutchings, M. I.; Komdeur, J.; Burke, T.; Dugdale, H. L.; Richardson, D. S. Gut microbiome composition, not alpha diversity, is associated with survival in a natural vertebrate population, Animal Microbiome, Volume 3 (2021) no. 1 | DOI

[93] Zaiss, M. M.; Rapin, A.; Lebon, L.; Dubey, L. K.; Mosconi, I.; Sarter, K.; Piersigilli, A.; Menin, L.; Walker, A. W.; Rougemont, J.; Paerewijck, O.; Geldhof, P.; McCoy, K. D.; Macpherson, A. J.; Croese, J.; Giacomin, P. R.; Loukas, A.; Junt, T.; Marsland, B. J.; Harris, N. L. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation, Immunity, Volume 43 (2015) no. 5, pp. 998-1010 | DOI

[94] Zeidner, N. S.; Schneider, B. S.; Dolan, M. C.; Piesman, J. An Analysis of Spirochete Load, Strain, and Pathology in a Model of Tick-Transmitted Lyme Borreliosis, Vector-Borne and Zoonotic Diseases, Volume 1 (2001) no. 1, pp. 35-44 | DOI

[95] Zhai, S.; Qin, S.; Li, L.; Zhu, L.; Zou, Z.; Wang, L. Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice, FEMS Microbiology Letters, Volume 366 (2019) no. 13 | DOI

[96] Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease, Cell Research, Volume 30 (2020) no. 6, pp. 492-506 | DOI

Cited by Sources: