The role of climate change and niche shifts in divergent range dynamics of a sister-species pair

10.24072/pcjournal.248 - Peer Community Journal, Volume 3 (2023), article no. e23.

Get full text PDF Peer reviewed and recommended by PCI

Species ranges are set by limitations in factors including climate tolerances, habitat use, and dispersal abilities. Understanding the factors governing species range dynamics remains a challenge that is ever more important in our rapidly changing world. Species ranges can shift if environmental changes affect available habitat, or if the niche or habitat connectivity of a species changes. We tested how changes in habitat availability, niche, or habitat connectivity could contribute to divergent range dynamics in a sister-species pair. The great-tailed grackle (Quiscalus mexicanus) has expanded its range northward from Texas to Nebraska in the past 40 years, while its closest relative, the boat-tailed grackle (Quiscalus major), has remained tied to the coasts of the Atlantic Ocean and the Gulf of Mexico as well as the interior of Florida. We created species distribution and connectivity models trained on citizen science data from 1970-1979 and 2010-2019 to determine how the availability of habitat, the types of habitat occupied, and range-wide connectivity have changed for both species. We found that the two species occupy distinct habitats and that the great-tailed grackle has shifted to occupy a larger breadth of urban, arid environments farther from natural water sources. Meanwhile, the boat-tailed grackle has remained limited to warm, wet, coastal environments. We found no evidence that changes in habitat connectivity affected the ranges of either species. Overall, our results suggest that the great-tailed grackle has shifted its realized niche as part of its rapid range expansion, while the range dynamics of the boat-tailed grackle may be shaped more by climate change. The expansion in habitats occupied by the great-tailed grackle is consistent with observations that species with high behavioral flexibility can rapidly expand their geographic range by using human-altered habitat. This investigation identifies how opposite responses to anthropogenic change could drive divergent range dynamics, elucidating the factors that have and will continue to shape species ranges.

Published online:
DOI: 10.24072/pcjournal.248
Keywords: anthropogenic environmental change, connectivity, geographic range expansion, grackle, Habitat, niche, range dynamics
Summers, Jeremy 1; Lukas, Dieter 2; Logan, Corina J 2, 3; Chen, Nancy 1

1 University of Rochester, Rochester, NY, USA
2 Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
3 University of California Santa Barbara, Santa Barbara, CA, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Summers, Jeremy and Lukas, Dieter and Logan, Corina J and Chen, Nancy},
     title = {The role of climate change and niche shifts in divergent range dynamics of a sister-species pair
     journal = {Peer Community Journal},
     eid = {e23},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.248},
     url = {}
AU  - Summers, Jeremy
AU  - Lukas, Dieter
AU  - Logan, Corina J
AU  - Chen, Nancy
TI  - The role of climate change and niche shifts in divergent range dynamics of a sister-species pair

JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
UR  -
DO  - 10.24072/pcjournal.248
ID  - 10_24072_pcjournal_248
ER  - 
%0 Journal Article
%A Summers, Jeremy
%A Lukas, Dieter
%A Logan, Corina J
%A Chen, Nancy
%T The role of climate change and niche shifts in divergent range dynamics of a sister-species pair

%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.248
%F 10_24072_pcjournal_248
Summers, Jeremy; Lukas, Dieter; Logan, Corina J; Chen, Nancy. The role of climate change and niche shifts in divergent range dynamics of a sister-species pair
. Peer Community Journal, Volume 3 (2023), article  no. e23. doi : 10.24072/pcjournal.248.

Peer reviewed and recommended by PCI : 10.24072/pci.ecology.100424

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Anantharaman, R.; Hall, K.; Shah, V. B.; Edelman, A. Circuitscape in Julia: High Performance Connectivity Modelling to Support Conservation Decisions, Proceedings of the JuliaCon Conferences, Volume 1 (2020) no. 1, p. 58 | DOI

[2] Anderson, J.; Hardy, E. A Land-use Classification System for Use with Remote-sensor data, U.S. Geological Survey Circular (1971) no. 671, p. 16

[3] Anderson, R. P.; Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent, Ecological Modelling, Volume 222 (2011) no. 15, pp. 2796-2811 | DOI

[4] Auersperg, A. M. I.; Szabo, B.; von Bayern, A. M. P.; Kacelnik, A. Spontaneous innovation in tool manufacture and use in a Goffin’s cockatoo, Current Biology, Volume 22 (2012) no. 21, p. R903-R904 | DOI

[5] Beier, P.; Spencer, W.; Baldwin, R. F.; McRAE, B. H. Toward Best Practices for Developing Regional Connectivity Maps, Conservation Biology, Volume 25 (2011) no. 5, pp. 879-892 | DOI

[6] Bird, C. D.; Emery, N. J. Insightful problem solving and creative tool modification by captive nontool-using rooks, PNAS, Volume 106 (2009) no. 25, pp. 10270-10375 | DOI

[7] Bivand, R.; Keitt, T.; Rowlingson, B.; Pebesma, E.; Sumner, M.; Hijmans, R.; Baston, D.; Rouault, E.; Warmerdam, F.; Ooms, J.; Rundel, C. rgdal: Bindings for the 'Geospatial' Data Abstraction Library, R Cran, 2023 (

[8] Bivand, R.; Lewin-Koh, N.; Pebesma, E.; Archer, E.; Baddeley, A.; Bearman, N.; Bibiko, H.-J.; Brey, S.; Callahan, J.; Carrillo, G.; Dray, S.; Forrest, D.; Friendly, M.; Giraudoux, P.; Golicher, D.; Rubio, V. G.; Hausmann, P.; Hufthammer, K. O.; Jagger, T.; Johnson, K.; Lewis, M.; Luque, S.; MacQueen, D.; Niccolai, A.; Pebesma, E.; Lamigueiro, O. P.; Plunkett, E.; Rubak, E.; Short, T.; Snow, G.; Stabler, B.; Stokely, M.; Turner, R. maptools: Tools for Handling Spatial Objects, R Cran, 2022 (

[9] Bonnin, N.; Stewart, F. A.; Wich, S. A.; Pintea, L.; Jantz, S. M.; Dickson, R.; Bellis, J.; Chitayat, A.; Ingram, R.; Moore, R. J.; Piel, A. K. Modelling landscape connectivity change for chimpanzee conservation in Tanzania, Biological Conservation, Volume 252 (2020) | DOI

[10] Broennimann, O.; Treier, U. A.; Müller-Schärer, H.; Thuiller, W.; Peterson, A. T.; Guisan, A. Evidence of climatic niche shift during biological invasion, Ecology Letters, Volume 10 (2007) no. 8, pp. 701-709 | DOI

[11] Broennimann, O.; Cola, V. D.; Petitpierre, B.; Breiner, F.; Scherrer, D.; D`Amen, M.; Randin, C.; Engler, R.; Hordijk, W.; Mod, H.; Pottier, J.; Febbraro, M. D.; Pellissier, L.; Pio, D.; Mateo, R. G.; Dubuis, A.; Maiorano, L.; Psomas, A.; Ndiribe, C.; Salamin, N.; Zimmermann, N.; Collart, F.; Guisan, A. ecospat: Spatial Ecology Miscellaneous Methods, R Cran, 2023 (

[12] Broennimann, O.; Fitzpatrick, M. C.; Pearman, P. B.; Petitpierre, B.; Pellissier, L.; Yoccoz, N. G.; Thuiller, W.; Fortin, M. J.; Randin, C.; Zimmermann, N. E.; Graham, C. H.; Guisan, A. Measuring ecological niche overlap from occurrence and spatial environmental data, Global Ecology and Biogeography, Volume 21 (2012) no. 4, pp. 481-497 | DOI

[13] Buckley, L. B.; Khaliq, I.; Swanson, D. L.; Hof, C. Does metabolism constrain bird and mammal ranges and predict shifts in response to climate change?, Ecology and Evolution, Volume 8 (2018) no. 24, pp. 12375-12385 | DOI

[14] Capainolo, P.; Perktaş, U.; Fellowes, M. D. Rapid range expansion predicted for the Common Grackle (Quiscalus quiscula) in the near future under climate change scenarios, Avian Research, Volume 12 (2021) no. 1 | DOI

[15] Chejanovski, Z. A.; Avilés-Rodríguez, K. J.; Lapiedra, O.; Preisser, E. L.; Kolbe, J. J. An experimental evaluation of foraging decisions in urban and natural forest populations of Anolis lizards, Urban Ecosystems, Volume 20 (2017) no. 5, pp. 1011-1018 | DOI

[16] Chen, I.-C.; Hill, J. K.; Ohlemüller, R.; Roy, D. B.; Thomas, C. D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming, Science, Volume 333 (2011) no. 6045, pp. 1024-1026 | DOI

[17] Chow, P. K. Y.; Lea, S. E. G.; Leaver, L. A. How practice makes perfect: the role of persistence, flexibility and learning in problem-solving efficiency, Animal Behaviour, Volume 112 (2016), pp. 273-283 | DOI

[18] Ciani, A. C. Intertroop agonistic behavior of a feral Rhesus Macaque troop ranging in town and forest areas in India, Aggressive Behavior, Volume 12 (1986) no. 6, pp. 433-439 | DOI

[19] Currie, D. J.; Venne, S. Climate change is not a major driver of shifts in the geographical distributions of North American birds, Global Ecology and Biogeography, Volume 26 (2017) no. 3, pp. 333-346 | DOI

[20] Danielson, J. J.; Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010), U.S. Geological Survey (2011) no. 2011-1073 | DOI

[21] EBD\textbackslash_relJan-2021, e. B. D. V. Cornell Lab of Ornithology, Ithaca, New York, 2021 (

[22] Elith, J.; Graham, C. H. Do they? How do they? WHY do they differ? on finding reasons for differing performances of species distribution models, Ecography, Volume 32 (2009) no. 1, pp. 66-77 | DOI

[23] Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species, Methods in Ecology and Evolution, Volume 1 (2010) no. 4, pp. 330-342 | DOI

[24] Essl, F.; Dullinger, S.; Rabitsch, W.; Hulme, P. E.; Pyšek, P.; Wilson, J. R. U.; Richardson, D. M. Historical legacies accumulate to shape future biodiversity in an era of rapid global change, Diversity and Distributions, Volume 21 (2015) no. 5, pp. 534-547 | DOI

[25] Evans, J. S.; Murphy, M. A.; Holden, Z. A.; Cushman, S. A. Modeling Species Distribution and Change Using Random Forest, Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications, Springer, New York, NY, 2011, pp. 139-159 | DOI

[26] Federspiel, I. G.; Garland, A.; Guez, D.; Bugnyar, T.; Healy, S. D.; Güntürkün, O.; Griffin, A. S. Adjusting foraging strategies: a comparison of rural and urban common mynas (Acridotheres tristis), Animal Cognition, Volume 20 (2017) no. 1, pp. 65-74 | DOI

[27] Fick, S. E.; Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, International Journal of Climatology, Volume 37 (2017) no. 12, pp. 4302-4315 | DOI

[28] Gaston, K. J. Species-range-size distributions: patterns, mechanisms and implications, Trends in Ecology Evolution, Volume 11 (1996) no. 5, pp. 197-201 | DOI

[29] Gaston, K. J. The Structure and Dynamics of Geographic Ranges, Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, New York, 2003

[30] Goldewijk, K. K. Estimating global land use change over the past 300 years: The HYDE Database, Global Biogeochemical Cycles, Volume 15 (2001) no. 2, pp. 417-433 | DOI

[31] Greggor, A. L.; Berger-Tal, O.; Blumstein, D. T.; Angeloni, L.; Bessa-Gomes, C.; Blackwell, B. F.; St Clair, C. C.; Crooks, K.; de Silva, S.; Fernández-Juricic, E.; Goldenberg, S. Z.; Mesnick, S. L.; Owen, M.; Price, C. J.; Saltz, D.; Schell, C. J.; Suarez, A. V.; Swaisgood, R. R.; Winchell, C. S.; Sutherland, W. J. Research Priorities from Animal Behaviour for Maximising Conservation Progress, Trends in Ecology Evolution, Volume 31 (2016) no. 12, pp. 953-964 | DOI

[32] Grenouillet, G.; Comte, L. Illuminating geographical patterns in species' range shifts, Global Change Biology, Volume 20 (2014) no. 10, pp. 3080-3091 | DOI

[33] Griffin, A. S.; Guez, D. Innovation and problem solving: A review of common mechanisms, Behavioural Processes (Animal Cognition in the Wild), Volume 109 (2014), pp. 121-134 | DOI

[34] Guillera-Arroita, G.; Lahoz-Monfort, J. J.; Elith, J. Maxent is not a presence-absence method: A comment on Thibaud et al., Methods in Ecology and Evolution, Volume 5 (2014) no. 11, pp. 1192-1197 | DOI

[35] Guillera-Arroita, G.; Lahoz-Monfort, J. J.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P. E.; Mccarthy, M. A.; Tingley, R.; Wintle, B. A. Is my species distribution model fit for purpose? Matching data and models to applications, Global Ecology and Biogeography, Volume 24 (2015) no. 3, pp. 276-292 | DOI

[36] Guisan, A.; Petitpierre, B.; Broennimann, O.; Daehler, C.; Kueffer, C. Unifying niche shift studies: insights from biological invasions, Trends in Ecology Evolution, Volume 29 (2014) no. 5, pp. 260-269 | DOI

[37] Hanski, I.; Gilpin, M. Metapopulation dynamics: brief history and conceptual domain, Biological Journal of the Linnean Society, Volume 42 (1991) no. 1, pp. 3-16 | DOI

[38] Hesselbarth, M. H. K.; Sciaini, M.; With, K. A.; Wiegand, K.; Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics, Ecography, Volume 42 (2019) no. 10, pp. 1648-1657 | DOI

[39] Hijmans, R. J.; Etten, J. v.; Sumner, M.; Cheng, J.; Baston, D.; Bevan, A.; Bivand, R.; Busetto, L.; Canty, M.; Fasoli, B.; Forrest, D.; Ghosh, A.; Golicher, D.; Gray, J.; Greenberg, J. A.; Hiemstra, P.; Hingee, K.; Ilich, A.; Geosciences, I. f. M. A.; Karney, C.; Mattiuzzi, M.; Mosher, S.; Naimi, B.; Nowosad, J.; Pebesma, E.; Lamigueiro, O. P.; Racine, E. B.; Rowlingson, B.; Shortridge, A.; Venables, B.; Wueest, R. raster: Geographic Data Analysis and Modeling, R Cran, 2023 (

[40] Hijmans, R. J.; Phillips, S.; Leathwick, J.; Elith, J. dismo: Species Distribution Modeling, R Cran, 2022 (

[41] Hill, M. P.; Gallardo, B.; Terblanche, J. S. A global assessment of climatic niche shifts and human influence in insect invasions, Global Ecology and Biogeography, Volume 26 (2017) no. 6, pp. 679-689 | DOI

[42] Hollister, J.; Shah, T.; Robitaille, A. L.; Beck, M. W.; Johnson, M. elevatr: Access Elevation Data from Various APIs, R Cran, 2022 (

[43] Holt, R. D. On the evolutionary ecology of species’ ranges, Evolutionary Ecology Research, Volume 5 (2003) no. 2, pp. 159-178 (

[44] Holt, R. D.; Gaines, M. S. Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches, Evolutionary Ecology, Volume 6 (1992) no. 5, pp. 433-447 | DOI

[45] Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the Conterminous United States - Representing a Decade of Land Cover Change Information, Photogrammetric Engineering and Remote Sensing, Volume 81 (2015), pp. 346-354 | DOI

[46] IUCN The IUCN Red List of Threatened Species, 2022 (

[47] Johnson, K.; Peer, B. D. Great-tailed Grackle (Quiscalus mexicanus), version 1.0, Birds of the World (2020) | DOI

[48] Johnston, A.; Hochachka, W. M.; Strimas-Mackey, M. E.; Ruiz Gutierrez, V.; Robinson, O. J.; Miller, E. T.; Auer, T.; Kelling, S. T.; Fink, D. Analytical guidelines to increase the value of community science data: An example using eBird data to estimate species distributions, Diversity and Distributions, Volume 27 (2021) no. 7, pp. 1265-1277 | DOI

[49] Justen, H.; Lee-Yaw, J. A.; Delmore, K. E. Reduced habitat suitability and landscape connectivity in a songbird migratory divide, Global Ecology and Biogeography, Volume 30 (2021) no. 10, pp. 2043-2056 | DOI

[50] Koen, E. L.; Bowman, J.; Sadowski, C.; Walpole, A. A. Landscape connectivity for wildlife: Development and validation of multispecies linkage maps, Methods in Ecology and Evolution, Volume 5 (2014) no. 7, pp. 626-633 | DOI

[51] Laumer, I. B.; Call, J.; Bugnyar, T.; Auersperg, A. M. I. Spontaneous innovation of hook-bending and unbending in orangutans (Pongo abelii), Scientific Reports, Volume 8 (2018) no. 1, p. 16518 | DOI

[52] Lefebvre, L.; Whittle, P.; Lascaris, E.; Finkelstein, A. Feeding innovations and forebrain size in birds, Animal Behaviour, Volume 53 (1997) no. 3, pp. 549-560 | DOI

[53] Lewis, J. leastcostpath: Modelling Pathways and Movement Potential Within a Landscape, R Cran, 2022 (

[54] Liu, C.; Berry, P. M.; Dawson, T. P.; Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions, Ecography, Volume 28 (2005) no. 3, pp. 385-393 | DOI

[55] Liu, C.; Wolter, C.; Xian, W.; Jeschke, J. M. Most invasive species largely conserve their climatic niche, Proceedings of the National Academy of Sciences of the United States of America, Volume 117 (2020) no. 38, pp. 23643-23651 | DOI

[56] Logan, C. J. Behavioral flexibility and problem solving in an invasive bird, PeerJ, Volume 2016 (2016) no. 5 | DOI

[57] Logan, C. J. Behavioral flexibility in an invasive bird is independent of other behaviors, PeerJ, Volume 4 (2016), p. e2215 | DOI

[58] Logan, C. J.; Avin, S.; Boogert, N.; Buskell, A.; Cross, F. R.; Currie, A.; Jelbert, S.; Lukas, D.; Mares, R.; Navarrete, A. F.; Shigeno, S.; Montgomery, S. H. Beyond brain size: Uncovering the neural correlates of behavioral and cognitive specialization, Comparative Cognition Behavior Reviews, Volume 13 (2018), pp. 55-89 | DOI

[59] Logan, C. J.; McCune, K. B.; Chen, N.; Lukas, D. Implementing a rapid geographic range expansion - the role of behavior and habitat changes (, In principle acceptance by Peer Community in Ecology of the version on 16 Dec 2021 (2020) (

[60] Magory Cohen, T.; Kumar, R. S.; Nair, M.; Hauber, M. E.; Dor, R. Innovation and decreased neophobia drive invasion success in a widespread avian invader, Animal Behaviour, Volume 163 (2020), pp. 61-72 | DOI

[61] Manrique, H. M.; Call, J. Spontaneous use of tools as straws in great apes, Animal Cognition, Volume 14 (2011) no. 2, pp. 213-226 | DOI

[62] Mi, C.; Huettmann, F.; Guo, Y.; Han, X.; Wen, L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence, PeerJ, Volume 2017 (2017) no. 1 | DOI

[63] Mikhalevich, I.; Powell, R.; Logan, C. Is behavioural flexibility evidence of cognitive complexity? How evolution can inform comparative cognition, Interface Focus, Volume 7 (2017) no. 3, p. 20160121 | DOI

[64] Miranda, L. d. S.; Awade, M.; Jaffé, R.; Costa, W. F.; Trevelin, L. C.; Borges, R. C.; Brito, R. M. d.; Tambosi, L. R.; Giannini, T. C. Combining connectivity and species distribution modeling to define conservation and restoration priorities for multiple species: A case study in the eastern Amazon, Biological Conservation, Volume 257 (2021) no. October 2020 | DOI

[65] Naimi, B.; Hamm, N. A. S.; Groen, T. A.; Skidmore, A. K.; Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?, Ecography, Volume 37 (2014) no. 2, pp. 191-203 | DOI

[66] Neate-Clegg, M. H. C.; O'Brien, T. G.; Mulindahabi, F.; Şekercioğlu, Ç. H. A disconnect between upslope shifts and climate change in an Afrotropical bird community, Conservation Science and Practice, Volume 2 (2020) no. 11, p. e291 | DOI

[67] Nicolaus, M.; Wang, X.; Lamers, K. P.; Ubels, R.; Both, C. Unravelling the causes and consequences of dispersal syndromes in a wild passerine, Proceedings of the Royal Society B: Biological Sciences, Volume 289 (2022) no. 1974, p. 20220068 | DOI

[68] Norberg, A.; Abrego, N.; Blanchet, F. G.; Adler, F. R.; Anderson, B. J.; Anttila, J.; Araújo, M. B.; Dallas, T.; Dunson, D.; Elith, J.; Foster, S. D.; Fox, R.; Franklin, J.; Godsoe, W.; Guisan, A.; O'Hara, B.; Hill, N. A.; Holt, R. D.; Hui, F. K.; Husby, M.; Kålås, J. A.; Lehikoinen, A.; Luoto, M.; Mod, H. K.; Newell, G.; Renner, I.; Roslin, T.; Soininen, J.; Thuiller, W.; Vanhatalo, J.; Warton, D.; White, M.; Zimmermann, N. E.; Gravel, D.; Ovaskainen, O. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels, Ecological Monographs, Volume 89 (2019) no. 3, pp. 1-24 | DOI

[69] Paquette, A.; Hargreaves, A. L. Biotic interactions are more often important at species’ warm versus cool range edges, Ecology Letters, Volume 24 (2021) no. 11, pp. 2427-2438 | DOI

[70] Peer, B. D. Invasion of the Emperor's Grackle, Ardeola, Volume 58 (2011) no. 2, pp. 405-409 | DOI

[71] Phillips, S. J.; Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation, Ecography, Volume 31 (2008) no. 2, pp. 161-175 | DOI

[72] Platts, P. J.; Mason, S. C.; Palmer, G.; Hill, J. K.; Oliver, T. H.; Powney, G. D.; Fox, R.; Thomas, C. D. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups, Scientific Reports, Volume 9 (2019) no. 1, pp. 1-10 | DOI

[73] Post, W.; Poston, J. P.; Bancroft, G. T. Boat-tailed Grackle (Quiscalus major), Birds of the World (1996) | DOI

[74] Ralston, J.; DeLuca, W. V.; Feldman, R. E.; King, D. I. Realized climate niche breadth varies with population trend and distribution in North American birds, Global Ecology and Biogeography, Volume 25 (2016) no. 10, pp. 1173-1180 | DOI

[75] Regos, A.; Gagne, L.; Alcaraz-Segura, D.; Honrado, J. P.; Domínguez, J. Effects of species traits and environmental predictors on performance and transferability of ecological niche models, Scientific Reports, Volume 9 (2019) no. 1, pp. 1-14 | DOI

[76] Regos, A.; Imbeau, L.; Desrochers, M.; Leduc, A.; Robert, M.; Jobin, B.; Brotons, L.; Drapeau, P. Hindcasting the impacts of land-use changes on bird communities with species distribution models of Bird Atlas data, Ecological Applications, Volume 28 (2018) no. 7, pp. 1867-1883 | DOI

[77] Robinson, O. J.; Ruiz-Gutierrez, V.; Reynolds, M. D.; Golet, G. H.; Strimas-Mackey, M.; Fink, D. Integrating citizen science data with expert surveys increases accuracy and spatial extent of species distribution models, Diversity and Distributions, Volume 26 (2020) no. 8, pp. 976-986 | DOI

[78] Rödder, D.; Engler, J. O. Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks, Global Ecology and Biogeography, Volume 20 (2011) no. 6, pp. 915-927 | DOI

[79] Selander, R. K.; Giller, D. R. Analysis of Sympatry of Great-Tailed and Boat-Tailed Grackles, The Condor, Volume 63 (1961) no. 1, pp. 29-86 | DOI

[80] Sherpa, S.; Guéguen, M.; Renaud, J.; Blum, M. G.; Gaude, T.; Laporte, F.; Akiner, M.; Alten, B.; Aranda, C.; Barre-Cardi, H.; Bellini, R.; Bengoa Paulis, M.; Chen, X. G.; Eritja, R.; Flacio, E.; Foxi, C.; Ishak, I. H.; Kalan, K.; Kasai, S.; Montarsi, F.; Pajović, I.; Petrić, D.; Termine, R.; Turić, N.; Vazquez-Prokopec, G. M.; Velo, E.; Vignjević, G.; Zhou, X.; Després, L. Predicting the success of an invader: Niche shift versus niche conservatism, Ecology and Evolution, Volume 9 (2019) no. 22, pp. 12658-12675 | DOI

[81] Sirén, A. P. K.; Morelli, T. L. Interactive range-limit theory (iRLT): An extension for predicting range shifts, Journal of Animal Ecology, Volume 89 (2020) no. 4, pp. 940-954 | DOI

[82] Soberón, J.; Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions, Proceedings of the National Academy of Sciences, Volume 106 (2009) no. supplement_2, pp. 19644-19650 | DOI

[83] Sofaer, H. R.; Jarnevich, C. S.; Flather, C. H. Misleading prioritizations from modelling range shifts under climate change, Global Ecology and Biogeography, Volume 27 (2018) no. 6, pp. 658-666 | DOI

[84] Sohl, T.; Reker, R.; Bouchard, M.; Sayler, K.; Dornbierer, J.; Wika, S.; Quenzer, R.; Friesz, A. Modeled historical land use and land cover for the conterminous United States, Journal of Land Use Science, Volume 11 (2016) no. 4, pp. 476-499 | DOI

[85] Sol, D.; Duncan, R. P.; Blackburn, T. M.; Cassey, P.; Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments, Proceedings of the National Academy of Sciences of the United States of America, Volume 102 (2005) no. 15, pp. 5460-5465 | DOI

[86] Sol, D.; Lapiedra, O.; González-Lagos, C. Behavioural adjustments for a life in the city, Animal Behaviour (Including Special Section: Behavioural Plasticity and Evolution), Volume 85 (2013) no. 5, pp. 1101-1112 | DOI

[87] Sol, D.; Lefebvre, L. Behavioural flexibility predicts invasion success in birds introduced to New Zealand, Oikos, Volume 90 (2000) no. 3, pp. 599-605 | DOI

[88] Sol, D.; Stirling, D. G.; Lefebvre, L. Behavioral Drive or Behavioral Inhibition in Evolution: Subspecific Diversification in Holarctic Passerines, Evolution, Volume 59 (2005) no. 12, pp. 2669-2677 | DOI

[89] Sol, D.; Székely, T.; Liker, A.; Lefebvre, L. Big-brained birds survive better in nature, Proceedings of the Royal Society B: Biological Sciences, Volume 274 (2007) no. 1611, pp. 763-769 | DOI

[90] Sol, D.; Timmermans, S.; Lefebvre, L. Behavioural flexibility and invasion success in birds, Animal Behaviour, Volume 63 (2002) no. 3, pp. 495-502 | DOI

[91] Stephan, P.; Bramon Mora, B.; Alexander, J. M. Positive species interactions shape species' range limits, Oikos, Volume 130 (2021) no. 10, pp. 1611-1625 | DOI

[92] Strimas-Mackey, M.; Hochachka, W. M.; Ruiz-Gutierrez, V.; Robinson, O. J.; Miller, E. T.; Auer, T.; Kelling, S.; Fink, D.; Johnson, A. Best Practices for Using eBird Data, Version 1.0, Cornell Lab of Ornithology, Ithaca, New York, 2020

[93] Strimas-Mackey, M.; Miller, E.; Hochachka, W.; Ornithology, C. L. o. auk: eBird Data Extraction and Processing in R, R Cran, 2022 (

[94] Sullivan, B. L.; Aycrigg, J. L.; Barry, J. H.; Bonney, R. E.; Bruns, N.; Cooper, C. B.; Damoulas, T.; Dhondt, A. A.; Dietterich, T.; Farnsworth, A.; Fink, D.; Fitzpatrick, J. W.; Fredericks, T.; Gerbracht, J.; Gomes, C.; Hochachka, W. M.; Iliff, M. J.; Lagoze, C.; La Sorte, F. A.; Merrifield, M.; Morris, W.; Phillips, T. B.; Reynolds, M.; Rodewald, A. D.; Rosenberg, K. V.; Trautmann, N. M.; Wiggins, A.; Winkler, D. W.; Wong, W. K.; Wood, C. L.; Yu, J.; Kelling, S. The eBird enterprise: An integrated approach to development and application of citizen science, Biological Conservation, Volume 169 (2014), pp. 31-40 | DOI

[95] Summers, J.; Lukas, D.; Logan, C.; Chen, N. The role of climate change and niche shifts in divergent range dynamics of a sister-species pair, Knowledge Network for Biocomplexity (2022) | DOI

[96] Swanson, D. L.; Garland, T. The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions, Evolution, Volume 63 (2009) no. 1, pp. 184-194 | DOI

[97] Taylor, A. H.; Hunt, G. R.; Holzhaider, J. C.; Gray, R. D. Spontaneous Metatool Use by New Caledonian Crows, Current Biology, Volume 17 (2007) no. 17, pp. 1504-1507 | DOI

[98] Thomas, C. D. Climate, climate change and range boundaries, Diversity and Distributions, Volume 16 (2010) no. 3, pp. 488-495 | DOI

[99] Titus, K.; Mosher, J. A. Chance-corrected Classification for Use in Discriminant Analysis : Ecological Applications, Volume 111 (1984) no. 1, pp. 1-7 (

[100] Tomiolo, S.; Ward, D. Species migrations and range shifts: A synthesis of causes and consequences, Perspectives in Plant Ecology, Evolution and Systematics, Volume 33 (2018) no. July 2017, pp. 62-77 | DOI

[101] Torres, L. G.; Sutton, P. J.; Thompson, D. R.; Delord, K.; Weimerskirch, H.; Sagar, P. M.; Sommer, E.; Dilley, B. J.; Ryan, P. G.; Phillips, R. A. Poor transferability of species distribution models for a pelagic predator, the grey petrel, indicates contrasting habitat preferences across ocean basins, PLoS ONE, Volume 10 (2015) no. 3 | DOI

[102] Trainor, A. M.; Walters, J. R.; Morris, W. F.; Sexton, J.; Moody, A. Empirical estimation of dispersal resistance surfaces: A case study with red-cockaded woodpeckers, Landscape Ecology, Volume 28 (2013) no. 4, pp. 755-767 | DOI

[103] Urbanek, S. rJava: Low-Level R to Java Interface, R Cran, 2021 (

[104] Vaughan, I. P.; Ormerod, S. J. The continuing challenges of testing species distribution models, Journal of Applied Ecology, Volume 42 (2005) no. 4, pp. 720-730 | DOI

[105] Viana, D. S.; Chase, J. M. Increasing climatic decoupling of bird abundances and distributions, Nature Ecology Evolution, Volume 6 (2022) no. 9, pp. 1299-1306 | DOI

[106] Vitousek, P. M.; Mooney, H. A.; Lubchenco, J.; Melillo, J. M. Human Domination of Earth's Ecosystems, Science, Volume 277 (1997) no. 5325, pp. 494-499 | DOI

[107] Warren, D. L.; Glor, R. E.; Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution, Evolution, Volume 62 (2008) no. 11, pp. 2868-2883 | DOI

[108] Wehtje, W. The range expansion of the great-tailed grackle (Quiscalus mexicanus Gmelin) in North America since 1880, Journal of Biogeography, Volume 30 (2003) no. 10, pp. 1593-1607 | DOI

[109] Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L. D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; Kuhn, M.; Pedersen, T. L.; Miller, E.; Bache, S. M.; Müller, K.; Ooms, J.; Robinson, D.; Seidel, D. P.; Spinu, V.; Takahashi, K.; Vaughan, D.; Wilke, C.; Woo, K.; Yutani, H. Welcome to the Tidyverse, Journal of Open Source Software, Volume 4 (2019) no. 43, p. 1686 | DOI

[110] Wiens, J. A. 3 - Metapopulation Dynamics and Landscape Ecology, Metapopulation Biology, Academic Press, San Diego, 1997, pp. 43-62 | DOI

[111] Wiens, J. J.; Ackerly, D. D.; Allen, A. P.; Anacker, B. L.; Buckley, L. B.; Cornell, H. V.; Damschen, E. I.; Jonathan Davies, T.; Grytnes, J. A.; Harrison, S. P.; Hawkins, B. A.; Holt, R. D.; McCain, C. M.; Stephens, P. R. Niche conservatism as an emerging principle in ecology and conservation biology, Ecology Letters, Volume 13 (2010) no. 10, pp. 1310-1324 | DOI

[112] Wolff, C. L.; Demarais, S.; Brooks, C. P.; Barton, B. T. Behavioral plasticity mitigates the effect of warming on white-tailed deer, Ecology and Evolution, Volume 10 (2020) no. 5, pp. 2579-2587 | DOI

[113] Wong, B. B.; Candolin, U. Behavioral responses to changing environments, Behavioral Ecology, Volume 26 (2015) no. 3, pp. 665-673 | DOI

[114] Wright, M. N.; Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R, Journal of Statistical Software, Volume 77 (2017), pp. 1-17 | DOI

[115] Wright, T.; Eberhard, J.; Hobson, E.; Avery, M.; Russello, M. Behavioral flexibility and species invasions: the adaptive flexibility hypothesis, Ethology Ecology Evolution, Volume 22 (2010) no. 4, pp. 393-404 | DOI

[116] Wu, J.; Jenerette, G. D.; Buyantuyev, A.; Redman, C. L. Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States, Ecological Complexity, Volume 8 (2011) no. 1, pp. 1-8 | DOI

[117] Wu, W.; Li, Y.; Hu, Y. Simulation of potential habitat overlap between red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in northeastern China, PeerJ, Volume 2016 (2016) no. 3, pp. 1-19 | DOI

[118] Yates, K. L.; Bouchet, P. J.; Caley, M. J.; Mengersen, K.; Randin, C. F.; Parnell, S.; Fielding, A. H.; Bamford, A. J.; Ban, S.; Barbosa, A. M.; Dormann, C. F.; Elith, J.; Embling, C. B.; Ervin, G. N.; Fisher, R.; Gould, S.; Graf, R. F.; Gregr, E. J.; Halpin, P. N.; Heikkinen, R. K.; Heinänen, S.; Jones, A. R.; Krishnakumar, P. K.; Lauria, V.; Lozano-Montes, H.; Mannocci, L.; Mellin, C.; Mesgaran, M. B.; Moreno-Amat, E.; Mormede, S.; Novaczek, E.; Oppel, S.; Ortuño Crespo, G.; Peterson, A. T.; Rapacciuolo, G.; Roberts, J. J.; Ross, R. E.; Scales, K. L.; Schoeman, D.; Snelgrove, P.; Sundblad, G.; Thuiller, W.; Torres, L. G.; Verbruggen, H.; Wang, L.; Wenger, S.; Whittingham, M. J.; Zharikov, Y.; Zurell, D.; Sequeira, A. M. Outstanding Challenges in the Transferability of Ecological Models, Trends in Ecology and Evolution, Volume 33 (2018) no. 10, pp. 790-802 | DOI

Cited by Sources: