Section: Forest & Wood Sciences
Topic: Plant biology, Biophysics and computational biology

Modelling the growth stress in tree branches: eccentric growth vs. reaction wood

10.24072/pcjournal.308 - Peer Community Journal, Volume 3 (2023), article no. e78.

Get full text PDF Peer reviewed and recommended by PCI

This work aims to model the mechanical processes used by tree branches to control their posture despite their increasing weight loading. The two known options for a branch to maintain its orientation are the asymmetry of maturation stress, including reaction wood formation, and eccentric radial growth. Both options can be observed in nature and influence the stress distribution developed in the branch each year. This so-called "growth stress" reflects the mechanical state of the branch. In this work, a growth stress model was developed at the cross-section level in order to quantify and study the biomechanical impact of each process. For illustration, this model was applied to branches of two 50-year-old trees, one softwood Pinus pinaster, and one hardwood Prunus avium (wild cherry tree), both simulated with the AmapSim discrete element software. For the wild cherry tree, the computed outputs highlighted that the eccentricity of radial growth seems to be as efficient as the formation of reaction wood to maintain postural control despite the increasing gravity. For the pine tree, eccentric radial growth appears to be less efficient than the formation of reaction wood. But although it does not necessarily act as a relevant lever for postural control, it greatly modifies the profile pattern of mechanical stress and could provide mechanical safety of the branch. This work opens experimental perspectives to understand the biomechanical processes involved in the formation of branches and their mechanical safety.

Published online:
DOI: 10.24072/pcjournal.308
Type: Research article
Van Rooij, Arnoul 1, 2; Badel, Eric 1; Barczi, Jean-François 3; Caraglio, Yves 3; Almeras, Tancrede 4; Gril, Joseph 1, 2

1 Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant, Site INRAE Crouël : 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France // Site Clermont : 1 Impasse Amélie Murat, 63178 Aubière, France
2 Institut Pascal, Campus Universitaire des Cézeaux, 4 avenue Blaise Pascal, TSA 60026 / CS 60026, 63178 Aubière Cedex, France
3 Botanique et Modélisation de l'Architecture des Plantes et des Végétations, Bd de la Lironde TA A-51/ PS 2 34398 Montpellier cedex 5, France
4 LMGC, CNRS, Université of Montpellier, Montpellier, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Van Rooij, Arnoul and Badel, Eric and Barczi, Jean-Fran\c{c}ois and Caraglio, Yves and Almeras, Tancrede and Gril, Joseph},
     title = {Modelling the growth stress in tree branches: eccentric growth vs. reaction wood},
     journal = {Peer Community Journal},
     eid = {e78},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.308},
     language = {en},
     url = {}
AU  - Van Rooij, Arnoul
AU  - Badel, Eric
AU  - Barczi, Jean-François
AU  - Caraglio, Yves
AU  - Almeras, Tancrede
AU  - Gril, Joseph
TI  - Modelling the growth stress in tree branches: eccentric growth vs. reaction wood
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.308
LA  - en
ID  - 10_24072_pcjournal_308
ER  - 
%0 Journal Article
%A Van Rooij, Arnoul
%A Badel, Eric
%A Barczi, Jean-François
%A Caraglio, Yves
%A Almeras, Tancrede
%A Gril, Joseph
%T Modelling the growth stress in tree branches: eccentric growth vs. reaction wood
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.308
%G en
%F 10_24072_pcjournal_308
Van Rooij, Arnoul; Badel, Eric; Barczi, Jean-François; Caraglio, Yves; Almeras, Tancrede; Gril, Joseph. Modelling the growth stress in tree branches: eccentric growth vs. reaction wood. Peer Community Journal, Volume 3 (2023), article  no. e78. doi : 10.24072/pcjournal.308.

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.forestwoodsci.100108

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Alméras, T.; Thibaut, A.; Gril, J. Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees, Trees, Volume 19 (2005) no. 4, pp. 457-467 | DOI

[2] Alméras, T.; Fournier, M. Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction, Journal of Theoretical Biology, Volume 256 (2009) no. 3, pp. 370-381 | DOI

[3] Alméras, T.; Clair, B. Critical review on the mechanisms of maturation stress generation in trees, Journal of The Royal Society Interface, Volume 13 (2016) no. 122 | DOI

[4] Alméras, T.; Jullien, D.; Gril, J. Modelling, Evaluation and Biomechanical Consequences of Growth Stress Profiles Inside Tree Stems, Plant Biomechanics, Springer International Publishing, Cham, 2018, pp. 21-48 | DOI

[5] Ancelin, P.; Fourcaud, T.; Lac, P. Modelling the biomechanical behaviour of growing trees at the forest stand scale. Part I: Development of an Incremental Transfer Matrix Method and application to simplified tree structures, Annals of Forest Science, Volume 61 (2004) no. 3, pp. 263-275 | DOI

[6] Archer, R. R. On the distribution of tree growth stresses, Wood Science and Technology, Volume 10 (1976) no. 4, pp. 293-309 | DOI

[7] Archer, R. R.; Byrnes, F. E. On the distribution of tree growth stresses? Part I: An anisotropic plane strain theory, Wood Science and Technology, Volume 8 (1974) no. 3, pp. 184-196 | DOI

[8] Barczi, J.-F.; Rey, H.; Caraglio, Y.; de Reffye, P.; Barthelemy, D.; Dong, Q. X.; Fourcaud, T. AmapSim: A Structural Whole-plant Simulator Based on Botanical Knowledge and Designed to Host External Functional Models, Annals of Botany, Volume 101 (2007) no. 8, pp. 1125-1138 | DOI

[9] Barthélémy, D.; Caraglio, Y. Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny, Annals of Botany, Volume 99 (2007) no. 3, pp. 375-407 | DOI

[10] Barthélémy, D.; Caraglio, Y.; Sabatier, S. 4.1 Crown Architecture of Valuable Broadleaved Species, Valuable broadleaved forests in Europe, Volume 22 (2009), p. 87

[11] Caraglio, Y. Le développement architectural du merisier, Forêt Entreprise, Volume 107 (1996), pp. 72-80

[12] Clair, B.; Ghislain, B.; Prunier, J.; Lehnebach, R.; Beauchêne, J.; Alméras, T. Mechanical contribution of secondary phloem to postural control in trees: the bark side of the force, New Phytologist, Volume 221 (2018) no. 1, pp. 209-217 | DOI

[13] Coudurier, T.; Barthelemy, D.; Chanson, B.; Courdier, F.; Loup, C. Premier résultats sur la modélisation du pin maritime Pinus pinaster ait.(pinecae), Architecture des arbres fruitiers et forestiers, Volume 306 (1993)

[14] Coutand, C.; Fournier, M.; Moulia, B. The Gravitropic Response of Poplar Trunks: Key Roles of Prestressed Wood Regulation and the Relative Kinetics of Cambial Growth versus Wood Maturation, Plant Physiology, Volume 144 (2007) no. 2, pp. 1166-1180 | DOI

[15] Dreyer, E. An important contribution to the description of growth stresses in branches of adult trees based on a new model and an optimisation process with digitised branches., Peer Community in Forest and Wood Sciences (2023) | DOI

[16] Fisher, J. B.; Stevenson, J. W. Occurrence of Reaction Wood in Branches of Dicotyledons and Its Role in Tree Architecture, Botanical Gazette, Volume 142 (1981) no. 1, pp. 82-95 | DOI

[17] Fourcaud, T.; Blaise, F.; Lac, P.; Castéra, P.; de Reffye, P. Numerical modelling of shape regulation and growth stresses in trees, Trees, Volume 17 (2002) no. 1, pp. 31-39 | DOI

[18] Fournier, M.; Chanson, B.; Guitard, D.; Thibaut, B. Mécanique de l'arbre sur pied : modélisation d'une structure en croissance soumise à des chargements permanents et évolutifs. 1. Analyse des contraintes de support, Annales des Sciences Forestières, Volume 48 (1991) no. 5, pp. 513-525 | DOI

[19] Fournier, M.; Chanson, B.; Thibaut, B.; Guitard, D. Mécanique de l'arbre sur pied : modélisation d'une structure en croissance soumise à des chargements permanents et évolutifs. 2. Analyse tridimensionnelle des contraintes de maturation, cas du feuillu standard, Annales des Sciences Forestières, Volume 48 (1991) no. 5, pp. 527-546 | DOI

[20] Fournier, M.; Baillères, H.; Chanson, B. Tree biomechanics: growth, cumulative prestresses, and reorientations, Biomimetics, Volume 2 (1994), pp. 229-251

[21] Gérard, J.; Guibal, D.; Paradis, S.; Vernay, M.; Beauchêne, J.; Brancheriau, L.; Châlon, I.; Daigremont, C.; Détienne, P.; Fouquet, D.; Langbour, P.; Lotte, S.; Thévenon, M.; Méjean, C.; Thibaut, A. Tropix 7, 2011 | DOI

[22] Ghislain, B.; Alméras, T.; Prunier, J.; Clair, B. Contributions of bark and tension wood and role of the G-layer lignification in the gravitropic movements of 21 tropical tree species, Annals of Forest Science, Volume 76 (2019) no. 4 | DOI

[23] Hallé, F.; Oldeman, R.; Tomlinson, P. Tropical trees and forests: an architectural analysis, Springer Verlag, 1978

[24] Heuret, P.; Meredieu, C.; Coudurier, T.; Courdier, F.; Barthelemy, D. Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinaster (Pinaceae), American Journal of Botany, Volume 93 (2006) no. 11, pp. 1577-1587 | DOI

[25] Huang, Y.-S.; Chen, S.-S.; Kuo-Huang, L.-L.; Lee, C.-M. Growth strain in the trunk and branches of Chamaecyparis formosensis and its influence on tree form, Tree Physiology, Volume 25 (2005) no. 9, pp. 1119-1126 | DOI

[26] Huang, Y.-S.; Hung, L.-F.; Kuo-Huang, L.-L. Biomechanical modeling of gravitropic response of branches: roles of asymmetric periphery growth strain versus self-weight bending effect, Trees, Volume 24 (2010) no. 6, pp. 1151-1161 | DOI

[27] Hung, L.-F.; Tsai, C.-C.; Chen, S.-J.; Huang, Y.-S.; Kuo-Huang, L.-L. Study of tension wood in the artificially inclined seedlings of Koelreuteria henryi Dummer and its biomechanical function of negative gravitropism, Trees, Volume 30 (2015) no. 3, pp. 609-625 | DOI

[28] Hung, L.-F.; Tsai, C.-C.; Chen, S.-J.; Huang, Y.-S.; Kuo-Huang, L.-L. Strain distribution, growth eccentricity, and tension wood distribution in the plagiotropic and orthotropic branches of Koelreuteria henryi Dummer, Trees, Volume 31 (2016) no. 1, pp. 149-164 | DOI

[29] Kübler, H. Studien über Wachstumsspannungen des Holzes III. Längenänderungen bei der Wärmebehandlung frishen Holzes, Holz Rohst Werkst, Volume 17 (1959), pp. 77-86

[30] Nicholson, J. E. A rapid method for estimating longitudinal growth stresses in logs, Wood Science and Technology, Volume 5 (1971) no. 1, pp. 40-48 | DOI

[31] Thibaut, B. Three-dimensional printing, muscles, and skeleton: mechanical functions of living wood, Journal of Experimental Botany, Volume 70 (2019) no. 14, pp. 3453-3466 | DOI

[32] Thibaut, B.; Gril, J. Tree growth forces and wood properties, Peer Community Journal, Volume 1 (2021) | DOI

[33] Tsai, C.-C.; Hung, L.-F.; Chien, C.-T.; Chen, S.-J.; Huang, Y.-S.; Kuo-Huang, L.-L. Biomechanical features of eccentric cambial growth and reaction wood formation in broadleaf tree branches, Trees, Volume 26 (2012) no. 5, pp. 1585-1595 | DOI

[34] Van Rooij, A. Growth stress model. Version V1, Data INRAE, 2022 | DOI

[35] Wang, Y.; Gril, J.; Sugiyama, J. Is the branch of Viburnum odoratissimum var. awabuki reaction wood? Unusual eccentric growth and various distributions of growth strain, 6th Plant Biomechanics Conference (2009), pp. 328-334

[36] Yamamoto, H.; Yoshida, M.; Okuyama, T. Growth stress controls negative gravitropism in woody plant stems, Planta, Volume 216 (2002) no. 2, pp. 280-292 | DOI

[37] Yang, J. L.; Baillères, H.; Okuyama, T.; Muneri, A.; Downes, G. Measurement methods for longitudinal surface strain in trees: a review, Australian Forestry, Volume 68 (2005) no. 1, pp. 34-43 | DOI

[38] Yoshida, M.; Okuyama:, T. Techniques for Measuring Growth Stress on the Xylem Surface Using Strain and Dial Gauges, Holzforschung, Volume 56 (2002) no. 5, pp. 461-467 | DOI

Cited by Sources: