Section: Evolutionary Biology
Topic: Evolution, Genetics/Genomics, Population biology

Telomere length varies with sex, hatching rank and year of birth in the Little Owl, Athene noctua

10.24072/pcjournal.341 - Peer Community Journal, Volume 3 (2023), article no. e107.

Get full text PDF Peer reviewed and recommended by PCI

Telomeres are non-coding DNA sequences located at the end of linear chromosomes, protecting genome integrity. In numerous taxa, telomeres shorten with age and telomere length (TL) is positively correlated with longevity. Moreover, TL is also affected by environmental stressors and/or resource-demanding situations particularly during early-life. Thus, TL has been used as a physiological marker of individual quality and also as an indicator of population trend in conservation physiology. In this study, we investigated the effects of hatching rank, year of birth (2014 to 2017), sex and nest environment on TL of 137 Little Owls nestlings (Athene noctua). Little Owls’ populations in Europe showed a marked declined in the end of the 20th century. Nowadays, in the studied Alsatian population, the population is increasing. In this study, our results indicated that telomeres are longer in females and, independently of sex, in nestlings with the highest body condition. There was also a negative effect of hatching rank but only for last-hatched nestlings in large clutches of 5 nestlings. We did not find any effect of the environmental covariates on nestlings’ TL. Finally, we found that nestlings’ TL were shorter the last year of the study, while nestlings’ body condition stayed unchanged over the same period. This result is intriguing given the local positive population dynamics and is further discussed in the context of physiological conservation. Future studies should investigate the link between reduced TL and survival prospects in this species.

Published online:
DOI: 10.24072/pcjournal.341
Type: Research article
Keywords: telomere, little owl, hatching rank, early-life effects, sex differences
Criscuolo, François 1; Fache, Inès 1; Scaar, Bertrand 2; Zahn, Sandrine 1; Bleu, Josefa 1

1 Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
2 Ligue pour la Protection des Oiseaux (LPO) Alsace, 1 rue du Wisch, 67560 Rosenwiller, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Criscuolo, Fran\c{c}ois and Fache, In\`es and Scaar, Bertrand and Zahn, Sandrine and Bleu, Josefa},
     title = {Telomere length varies with sex, hatching rank and year of birth in the {Little} {Owl,} {\protect\emph{Athene} noctua}},
     journal = {Peer Community Journal},
     eid = {e107},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.341},
     language = {en},
     url = {}
AU  - Criscuolo, François
AU  - Fache, Inès
AU  - Scaar, Bertrand
AU  - Zahn, Sandrine
AU  - Bleu, Josefa
TI  - Telomere length varies with sex, hatching rank and year of birth in the Little Owl, Athene noctua
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.341
LA  - en
ID  - 10_24072_pcjournal_341
ER  - 
%0 Journal Article
%A Criscuolo, François
%A Fache, Inès
%A Scaar, Bertrand
%A Zahn, Sandrine
%A Bleu, Josefa
%T Telomere length varies with sex, hatching rank and year of birth in the Little Owl, Athene noctua
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.341
%G en
%F 10_24072_pcjournal_341
Criscuolo, François; Fache, Inès; Scaar, Bertrand; Zahn, Sandrine; Bleu, Josefa. Telomere length varies with sex, hatching rank and year of birth in the Little Owl, Athene noctua. Peer Community Journal, Volume 3 (2023), article  no. e107. doi : 10.24072/pcjournal.341.

Peer reviewed and recommended by PCI : 10.24072/pci.evolbiol.100653

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Amundsen, T.; Slagsvold, T. Lack's Brood Reduction Hypothesis and Avian Hatching Asynchrony: What's Next?, Oikos, Volume 76 (1996) no. 3 | DOI

[2] Andersen, L.; Sunde, P.; Pellegrino, I.; Loeschcke, V.; Pertoldi, C. Using Population Viability Analysis, Genomics, and Habitat Suitability to Forecast Future Population Patterns of Little Owl Athene Noctua across Europe, Ecology and Evolution, Volume 7 (2017), pp. 10987-11001 | DOI

[3] Anderson, D.; Budde, C.; Apanius, V.; Gomez, J.; Bird, D.; Weathers, W. Prey size influences female competitive dominance in nestling american kestrels (Falco sparverius, Ecology, Volume 74 (1993), pp. 367-376 | DOI

[4] Angelier, F.; Costantini, D.; Blévin, P.; Chastel, O. Do Glucocorticoids Mediate the Link between Environmental Conditions and Telomere Dynamics in Wild Vertebrates? A Review, General and Comparative Endocrinology, Volume 256 (2017), pp. 99-111 | DOI

[5] Angelier, F.; Weimerskirch, H.; Barbraud, C.; Chastel, O. Is Telomere Length a Molecular Marker of Individual Quality? Insights from a Long-Lived Bird, Functional Ecology, Volume 33 (2019), pp. 1076-1087 | DOI

[6] Armstrong, E.; Boonekamp, J. Does Oxidative Stress Shorten Telomeres in Vivo? A Meta-Analysis, Ageing Research Reviews, Volume 85 (2023), p. 101854 | DOI

[7] Asghar, M.; Hasselquist, D.; Hansson, B.; Zehtindjiev, P.; Westerdahl, H.; Bensch, S. Hidden Costs of Infection: Chronic Malaria Accelerates Telomere Degradation and Senescence in Wild Birds, Science (New York, N.Y.), Volume 347 (2015), pp. 436-438 | DOI

[8] Barrett, E.; Richardson, D. Sex Differences in Telomeres and Lifespan, Aging Cell, Volume 10 (2011), pp. 913-921 | DOI

[9] Bauch, C.; Gatt, M.; Granadeiro, J.; Verhulst, S.; Catry, P. Sex-Specific Telomere Length and Dynamics in Relation to Age and Reproductive Success in Cory's Shearwaters, Molecular Ecology, Volume 29 (2020), pp. 1344-1357 | DOI

[10] Beaulieu, M.; Costantini, D. Biomarkers of Oxidative Status: Missing Tools in Conservation Physiology, Conservation Physiology, Volume 2 (2014), p. 014 | DOI

[11] Beaulieu, M.; Reichert, S.; Le Maho, Y.; Ancel, A.; Criscuolo, F. Oxidative Status and Telomere Length in a Long-Lived Bird Facing a Costly Reproductive Event, Functional Ecology, Volume 25 (2011), pp. 577-585 | DOI

[12] Bersuder, D.; Wassmer, B. La Chevêche d'Athéna Athene Noctua Dans l'Arrière-Kochersberg (Alsace) : Statut, Habitat, Reproduction et Perspectives, Ciconia, Volume 44 (2020), pp. 89-136

[13] Bichet, C.; Bouwhuis, S.; Bauch, C.; Verhulst, S.; Becker, P.; Vedder, O. Telomere Length Is Repeatable, Shortens with Age and Reproductive Success, and Predicts Remaining Lifespan in a Long-Lived Seabird, Molecular Ecology, Volume 29 (2020), pp. 429-441 | DOI

[14] Blackburn, E. Structure and Function of Telomeres, Nature, Volume 350 (1991), pp. 569-573 | DOI

[15] Blackburn, E. Telomere states and cell fates, Nature, Volume 408 (2000), pp. 53-56 | DOI

[16] Boonekamp, J.; Bauch, C.; Mulder, E.; Verhulst, S. Does oxidative stress shorten telomeres?, Biology Letters, Volume 13 (2017), p. 20170164 | DOI

[17] Boonekamp, J.; Mulder, E.; Verhulst, S. Canalisation in the Wild: Effects of Developmental Conditions on Physiological Traits Are Inversely Linked to Their Association with Fitness, Ecology Letters, Volume 21 (2018), pp. 857-864 | DOI

[18] Boonekamp, J.; Mulder, G.; Salomons, H.; Dijkstra, C.; Verhulst, S. Nestling Telomere Shortening, but Not Telomere Length, Reflects Developmental Stress and Predicts Survival in Wild Birds, Proceedings of the Royal Society of London B: Biological Sciences, Volume 281 (2014), p. 20133287 | DOI

[19] Bortolotti, G. Influence of Sibling Competition on Nestling Sex Ratios of Sexually Dimorphic Birds, The American Naturalist, Volume 127 (1986), pp. 495-507 | DOI

[20] Caprioli, M.; Romano, M.; Romano, A.; Rubolini, D.; Motta, R.; Folini, M.; Saino, N. Nestling Telomere Length Does Not Predict Longevity, but Covaries with Adult Body Size in Wild Barn Swallows, Biology Letters, Volume 9 (2013), p. 20130340 | DOI

[21] Chatelain, M.; Drobniak, S.; Szulkin, M. The Association between Stressors and Telomeres in Non-Human Vertebrates: A Meta-Analysis, Ecology Letters, Volume 23 (2020), pp. 381-398 | DOI

[22] Chik, H.; Sparks, A.; Schroeder, J.; Dugdale, H. A Meta-Analysis on the Heritability of Vertebrate Telomere Length, Journal of Evolutionary Biology, Volume 35 (2022), pp. 1283-1295 | DOI

[23] Criscuolo, F.; Dobson, F.; Schull, Q. The Influence of Phylogeny and Life History on Telomere Lengths and Telomere Rate of Change among Bird Species: A Meta-Analysis, Ecology and Evolution, Volume 11 (2021), pp. 12908-12922 | DOI

[24] Criscuolo, F.; Fache, I.; Scaar, B.; Zahn, S.; Bleu, J. Code and Data for “Telomere Length Vary with Sex, Hatching Order and Year of Birth in Little Owls, Athene Noctua, 2023 | DOI

[25] Criscuolo, F.; Fache, I.; Scaar, B.; Zahn, S.; Bleu, J. Supplementary Information of the Article Telomere Length Vary with Sex, Hatching Rank and Year of Birth in Little Owls, Athene Noctua, 2023 | DOI

[26] Criscuolo, F.; Monaghan, P.; Nasir, L.; Metcalfe, N. Early Nutrition and Phenotypic Development: `Catch-up' Growth Leads to Elevated Metabolic Rate in Adulthood, Proceedings of the Royal Society B: Biological Sciences, Volume 275 (2008), pp. 1565-1570 | DOI

[27] Dantzer, B.; Fletcher, Q. Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones, Experimental Gerontology, Volume 71 (2015), pp. 38-47 | DOI

[28] Dupoué, A.; Blaimont, P.; Angelier, F.; Ribout, C.; Rozen-Rechels, D.; Richard, M.; Miles, D.; Villemereuil, P.; Rutschmann, A.; Badiane, A.; Aubret, F.; Lourdais, O.; Meylan, S.; Cote, J.; Clobert, J.; Le Galliard, J.-F. Lizards from Warm and Declining Populations Are Born with Extremely Short Telomeres, Proceedings of the National Academy of Sciences, Volume 119 (2022), p. 2201371119 | DOI

[29] Dupoué, A.; Rutschmann, A.; Le Galliard, J.; Clobert, J.; Angelier, F.; Marciau, C.; Ruault, S.; Miles, D.; Meylan, S. Shorter Telomeres Precede Population Extinction in Wild Lizards, Scientific Reports, Volume 7 (2017), p. 16976 | DOI

[30] Eastwood, J. R.; Hall, M. L.; Teunissen, N.; Kingma, S. A.; Hidalgo Aranzamendi, N.; Fan, M.; Roast, M.; Verhulst, S.; Peters, A. Early‐life telomere length predicts lifespan and lifetime reproductive success in a wild bird, Molecular Ecology, Volume 28 (2019) no. 5, pp. 1127-1137 | DOI

[31] Eisenberg, D.; Nettle, D.; Verhulst, S. How to Calculate the Repeatability (ICC) of Telomere Length Measures, 2020 (

[32] Exo, K. Population Ecology of Little Owls Athene Noctua in Central Europe: A Review. 64–75, The Ecology and Conservation of European Owls, Joint Nature Conservation Committee, 1992, pp. 64-75

[33] Fitzpatrick, L.; Olsson, M.; Pauliny, A.; While, G.; Wapstra, E. Individual Telomere Dynamics and Their Links to Life History in a Viviparous Lizard, Proceedings of the Royal Society B: Biological Sciences, Volume 288 (2021), p. 20210271 | DOI

[34] Foote, C.; Gault, E.; Nasir, L.; Monaghan, P. Telomere Dynamics in Relation to Early Growth Conditions in the Wild in the Lesser Black-Backed Gull, Journal of Zoology, Volume 283 (2011), pp. 203-209 | DOI

[35] Geiger, S.; Le Vaillant, M.; Lebard, T.; Reichert, S.; Stier, A.; Le Maho, Y.; Criscuolo, F. Catching-up but Telomere Loss: Half-Opening the Black Box of Growth and Ageing Trade-off in Wild King Penguin Chicks, Molecular Ecology, Volume 21 (2012), pp. 1500-1510 | DOI

[36] Griffiths, R.; Double, M.; Orr, K.; Dawson, R. A DNA Test to Sex Most Birds, Molecular Ecology, Volume 7 (1998), pp. 1071-1075 | DOI

[37] Groothuis, T.; Müller, W.; Engelhardt, N.; Carere, C.; Eising, C. Maternal Hormones as a Tool to Adjust Offspring Phenotype in Avian Species, Neuroscience & Biobehavioral Reviews, Volume 29 (2005), pp. 329-352 | DOI

[38] Groothuis, T. G.; Schwabl, H. Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them?, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 363 (2007) no. 1497, pp. 1647-1661 | DOI

[39] Génot, J.-C. La chevêche d'athéna, Athene noctua, dans la Réserve de la biosphère des Vosges du Nord: de 1984 à 2004, Ciconia, Volume 29 (2005), p. 274

[40] Hameau, P.; Hardouin, L.; Lecomte, P.; Penpeny-Lecomte, M.; Scaar, B.; Sève, D.; Henry, P.-Y. Protocole minimal commun pour le suivi de la Chevêche d'Athéna (Athene noctua) par capture-recapture en nichoirs dans le cadre d'un programme personnel de baguage en France, Muséum National d'Histoire Naturelle, Paris, France, 2015

[41] Hasselquist, D.; Kempenaers, B. Parental Care and Adaptive Brood Sex Ratio Manipulation in Birds, Philosophical transactions of the royal society of london. Series B: Biological sciences (Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences), Volume 357 (2002), pp. 363-372 | DOI

[42] Haussmann, M.; Winkler, D.; O'Reilly, K.; Huntington, C.; Nisbet, I.; Vleck, C. Telomeres Shorten More Slowly in Long-Lived Birds and Mammals than in Short–Lived Ones, Proceedings of the Royal Society of London. Series B: Biological Sciences, Volume 270 (2003), pp. 1387-1392 | DOI

[43] Herborn, K.; Heidinger, B.; Boner, W.; Noguera, J.; Adam, A.; Daunt, F.; Monaghan, P. Stress Exposure in Early Post-Natal Life Reduces Telomere Length: An Experimental Demonstration in a Long-Lived Seabird, Proceedings of the Royal Society B: Biological Sciences, Volume 281 (2014), p. 20133151 | DOI

[44] Juillard, M. La chouette chevêche. “Nos oiseaux” Société romande pour l'étude et la protection des oiseaux, 1984, p. 243

[45] Kirkwood, J. Energy Requirements for Maintenance and Growth of Wild Mammals, Birds and Reptiles in Captivity, The Journal of Nutrition, Volume 121 (1991), pp. 29-34 | DOI

[46] Kärkkäinen, T.; Teerikorpi, P.; Schuett, W.; Stier, A.; Laaksonen, T. Interplays between Pre- and Post-Natal Environments Affect Early-Life Mortality, Body Mass and Telomere Dynamics in the Wild, Journal of Experimental Biology, Volume 224 (2021), p. 231290 | DOI

[47] Lack, D. The Significance of Clutch-Size, Ibis, Volume 89 (1947), pp. 302-352 | DOI

[48] Le Gouar, P. J.; Schekkerman, H.; van der Jeugd, H. P.; Boele, A.; van Harxen, R.; Fuchs, P.; Stroeken, P.; van Noordwijk, A. J. Long-term trends in survival of a declining population: the case of the little owl (Athene noctua) in the Netherlands, Oecologia, Volume 166 (2010) no. 2, pp. 369-379 | DOI

[49] Lea, J.; Walker, S.; Kerley, G.; Jackson, J.; Matevich, S.; Shultz, S. Non-Invasive Physiological Markers Demonstrate Link between Habitat Quality, Adult Sex Ratio and Poor Population Growth Rate in a Vulnerable Species, the Cape Mountain Zebra, Functional Ecology, Volume 32 (2018), pp. 300-312 | DOI

[50] Lemaitre, J. Deciphering the Relative Contribution of Environmental and Biological Factors Driving Telomere Length in Nestlings, Peer Community in Evolutionary Biology, Volume 100653 (2023) | DOI

[51] Louzon, M.; Coeurdassier, M.; Gimbert, F.; Pauget, B.; Vaufleury, A. Telomere Dynamic in Humans and Animals: Review and Perspectives in Environmental Toxicology, Environment International, Volume 131 (2019), p. 105025 | DOI

[52] Metcalfe, N.; Monaghan, P. Compensation for a Bad Start: Grow Now, Pay Later?, Trends in Ecology & Evolution, Volume 16 (2001), pp. 254-260 | DOI

[53] Metcalfe, N.; Monaghan, P. Growth versus Lifespan: Perspectives from Evolutionary Ecology, Experimental Gerontology, Volume 38 (2003), pp. 935-940 | DOI

[54] Michel, V.; Naef-Daenzer, B.; Keil, H.; Grüebler, M. Reproductive Consequences of Farmland Heterogeneity in Little Owls (Athene Noctua, Oecologia, Volume 183 (2017), pp. 1019-1029 | DOI

[55] Monaghan, P.; Ozanne, S. Somatic Growth and Telomere Dynamics in Vertebrates: Relationships, Mechanisms and Consequences, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 373 (2018), p. 20160446 | DOI

[56] Nettle, D.; Andrews, C.; Reichert, S.; Bedford, T.; Kolenda, C.; Parker, C.; Martin-Ruiz, C.; Monaghan, P.; Bateson, M. Early-Life Adversity Accelerates Cellular Ageing and Affects Adult Inflammation: Experimental Evidence from the European Starling, Scientific Reports, Volume 7 (2017), pp. 1-10 | DOI

[57] Nettle, D.; Monaghan, P.; Gillespie, R.; Brilot, B.; Bedford, T.; Bateson, M. An Experimental Demonstration That Early-Life Competitive Disadvantage Accelerates Telomere Loss, Proceedings of the Royal Society B: Biological Sciences, Volume 282 (2015), p. 20141610 | DOI

[58] Noguera, J.; Metcalfe, N.; Reichert, S.; Monaghan, P. Embryonic and Postnatal Telomere Length Decrease with Ovulation Order within Clutches, Scientific Reports, Volume 6 (2016), p. 25915 | DOI

[59] Peig, J.; Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method, Oikos, Volume 118 (2009) no. 12, pp. 1883-1891 | DOI

[60] Postma, E.; Siitari, H.; Schwabl, H.; Richner, H.; Tschirren, B. The Multivariate Egg: Quantifying within- and among-Clutch Correlations between Maternally Derived Yolk Immunoglobulins and Yolk Androgens Using Multivariate Mixed Models, Oecologia, Volume 174 (2014), pp. 631-638 | DOI

[61] Q.G.I.S. Development Team QGIS Geographic Information System, Open Source Geospatial Foundation Project (2020) (

[62] Quque, M.; Paquet, M.; Zahn, S.; Théron, F.; Faivre, B.; Sueur, C.; Criscuolo, F.; Doutrelant, C.; Covas, R. Contrasting Associations between Nestling Telomere Length and Pre and Postnatal Helpers' Presence in a Cooperatively Breeding Bird, Oecologia, Volume 196 (2021), pp. 37-51 | DOI

[63] R. Core Team R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2023 (

[64] Reichert, S.; Criscuolo, F.; Zahn, S.; Arrivé, M.; Bize, P.; Massemin, S. Immediate and Delayed Effects of Growth Conditions on Ageing Parameters in Nestling Zebra Finches, Journal of Experimental Biology, Volume 218 (2015), pp. 491-499 | DOI

[65] Reichert, S.; Stier, A. Does oxidative stress shorten telomeres in vivo? A review, Biology Letters, Volume 13 (2017), p. 20170463 | DOI

[66] Remot, F.; Ronget, V.; Froy, H.; Rey, B.; Gaillard, J.-M.; Nussey, D.; Lemaître, J.-F. No Sex Differences in Adult Telomere Length across Vertebrates: A Meta-Analysis, Royal Society Open Science, Volume 7 (2020), p. 200548 | DOI

[67] Salmón, P.; Burraco, P. Telomeres and Anthropogenic Disturbances in Wildlife: A Systematic Review and Meta-Analysis, Molecular Ecology, Volume 31 (2022), pp. 6018-6039 | DOI

[68] Salomons, H. M.; Mulder, G. A.; van de Zande, L.; Haussmann, M. F.; Linskens, M. H. K.; Verhulst, S. Telomere shortening and survival in free-living corvids, Proceedings of the Royal Society B: Biological Sciences, Volume 276 (2009) no. 1670, pp. 3157-3165 | DOI

[69] Saulnier, A.; Bleu, J.; Lemonnier, G.; Uhlrich, P.; Zahn, S.; Massemin, S. Does the Urban Environment Act as a Filter on the Individual Quality of Birds?, Birds, Volume 3 (2022), pp. 84-98 | DOI

[70] Sheldon, E. L.; Eastwood, J. R.; Teunissen, N.; Roast, M. J.; Aranzamendi, N. H.; Fan, M.; Louise Hall, M.; Kingma, S. A.; Verhulst, S.; Peters, A. Telomere dynamics in the first year of life, but not later in life, predict lifespan in a wild bird, Molecular Ecology, Volume 31 (2021) no. 23, pp. 6008-6017 | DOI

[71] Spurgin, L.; Bebbington, K.; Fairfield, E.; Hammers, M.; Komdeur, J.; Burke, T.; Dugdale, H.; Richardson, D. Spatio-Temporal Variation in Lifelong Telomere Dynamics in a Long-Term Ecological Study, Journal of Animal Ecology, Volume 87 (2018), pp. 187-198 | DOI

[72] Stier, A.; Massemin, S.; Zahn, S.; Tissier, M.; Criscuolo, F. Starting with a Handicap: Effects of Asynchronous Hatching on Growth Rate, Oxidative Stress and Telomere Dynamics in Free-Living Great Tits, Oecologia, Volume 179 (2015), pp. 999-1010 | DOI

[73] Stier, A.; Metcalfe, N.; Monaghan, P. Pace and stability of embryonic development affect telomere dynamics: an experimental study in a precocial bird model, Proceedings of the Royal Society B: Biological Sciences, Volume 287 (2020), p. 20201378 | DOI

[74] Stindl, R. Is telomere erosion a mechanism of species extinction?, Journal of Experimental Zoology, Volume 302B (2004), pp. 111-120 | DOI

[75] Teather, K. L.; Weatherhead, P. J. Allometry, Adaptation, and the Growth and Development of Sexually Dimorphic Birds, Oikos, Volume 71 (1994) no. 3 | DOI

[76] Thorup, K.; Sunde, P.; Jacobsen, L.; Rahbek, C. Breeding Season Food Limitation Drives Population Decline of the Little Owl Athene Noctua in Denmark, Ibis, Volume 152 (2010), pp. 803-814 | DOI

[77] Tricola, G.; Simons, M.; Atema, E.; Boughton, R.; Brown, J.; Dearborn, D.; Divoky, G.; Eimes, J.; Huntington, C.; Kitaysky, A.; Juola, F.; Lank, D.; Litwa, H.; Mulder, E.; Nisbet, I.; Okanoya, K.; Safran, R.; Schoech, S.; Schreiber, E.; Thompson, P.; Verhulst, S.; Wheelwright, N.; Winkler, D.; Young, R.; Vleck, C.; Haussmann, M. The Rate of Telomere Loss Is Related to Maximum Lifespan in Birds, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 373 (2018), p. 20160445 | DOI

[78] Tschumi, M.; Humbel, J.; Erbes, J.; Fattebert, J.; Fischer, J.; Fritz, G.; Geiger, B.; Harxen, R.; Hoos, B.; Hurst, J.; Jacobsen, L.; Keil, H.; Kneule, W.; Michel, V.; Michels, H.; Möbius, L.; Perrig, M.; Rößler, P.; Schneider, D.; Schuch, S.; Stroeken, P.; Naef-Daenzer, B.; Grüebler, M. Parental Sex Allocation and Sex-Specific Survival Drive Offspring Sex Ratio Bias in Little Owls, Behavioral Ecology and Sociobiology, Volume 73 (2019), p. 85 | DOI

[79] Vedder, O.; Verhulst, S.; Bauch, C.; Bouwhuis, S. Telomere Attrition and Growth: A Life-History Framework and Case Study in Common Terns, Journal of Evolutionary Biology, Volume 30 (2017), pp. 1409-1419 | DOI

[80] Vedder, O.; Verhulst, S.; Zuidersma, E.; Bouwhuis, S. Embryonic Growth Rate Affects Telomere Attrition: An Experiment in a Wild Bird, Journal of Experimental Biology, Volume 221 (2018), p. 181586 | DOI

[81] Watson, H.; Bolton, M.; Monaghan, P. Variation in Early-Life Telomere Dynamics in a Long-Lived Bird: Links to Environmental Conditions and Survival, Journal of Experimental Biology, Volume 218 (2015), pp. 668-674 | DOI

[82] Williams, T. Intraspecific Variation in Egg Size and Egg Composition in Birds: Effects on Offspring Fitness, Biological Reviews, Volume 69 (1994), pp. 35-59 | DOI

[83] Williams, T.; Groothuis, T. Egg Quality, Embryonic Development, and Post-Hatching Phenotype: An Integrated Perspective, Nests, Eggs, and Incubation: New Ideas about Avian Reproduction, Oxford University Press Oxford, 2015, pp. 113-126

[84] Wood, E.; Young, A. Telomere Attrition Predicts Reduced Survival in a Wild Social Bird, but Short Telomeres Do Not, Molecular Ecology, Volume 28 (2019), pp. 3669-3680 | DOI

[85] Young, R.; Kitaysky, A.; Haussmann, M.; Descamps, S.; Orben, R.; Elliott, K.; Gaston, A. Age, sex, and telomere dynamics in a long-lived seabird with male-biased parental care, PLOS ONE, Volume 8 (2013), p. 74931 | DOI

[86] van Nieuwenhuyse, D.; Génot, J.-C.; Johnson, D. The Little Owl: Conservation, Ecology and Behavior of Athene Noctua, Cambridge University Press, 2008, p. 574

[87] von Zglinicki, T. Oxidative stress shortens telomeres, Trends in Biochemical Sciences, Volume 27 (2002) no. 7, pp. 339-344 | DOI

Cited by Sources: