Section: Mathematical & Computational Biology
Topic: Biophysics and computational biology, Applied mathematics, Evolution

The origin of the allometric scaling of lung ventilation in mammals

10.24072/pcjournal.76 - Peer Community Journal, Volume 2 (2022), article no. e2.

Get full text PDF Peer reviewed and recommended by PCI
article image

A model of optimal control of ventilation has recently been developed for humans. This model highlights the importance of the localization of the transition between a convective and a diffusive transport of respiratory gas. This localization determines how ventilation should be controlled in order to minimize its energetic cost at any metabolic regime. We generalized this model to any mammal, based on the core morphometric characteristics shared by all mammalian lungs and on their allometric scaling from the literature. Since the main energetic costs of ventilation are related to convective transport, we prove that, for all mammals, the localization of the shift from a convective transport to a diffusive transport plays a critical role on keeping this cost low while fulfilling the lung function. Our model predicts for the first time the localization of this transition in order to minimize the energetic cost of ventilation, depending on mammal mass and metabolic regime. From this optimal localization, we are able to predict allometric scaling laws for both tidal volumes and breathing rates, at any metabolic rate. We ran our model for the three common metabolic rates -- basal, field and maximal -- and showed that our predictions reproduce accurately experimental data available in the literature. Our analysis supports the hypothesis that mammals allometric scaling laws of tidal volumes and breathing rates at a given metabolic rate are driven by a few core geometrical characteristics shared by mammalian lungs and by the physical processes of respiratory gas transport.

Published online:
DOI: 10.24072/pcjournal.76
Type: Research article

Noël, Frédérique 1; Karamaoun, Cyril 1; Dempsey, Jerome A. 2; Mauroy, Benjamin 1

1 Université Côte d’Azur, CNRS, LJAD, Vader center, Nice, France
2 John Rankin Laboratory of Pulmonary Medicine, Department of Preventive Medicine, University of Wisconsin School of Medicine, Madison, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {No\"el, Fr\'ed\'erique and Karamaoun, Cyril and Dempsey, Jerome A. and Mauroy, Benjamin},
     title = {The origin of the allometric scaling of lung ventilation in mammals},
     journal = {Peer Community Journal},
     eid = {e2},
     publisher = {Peer Community In},
     volume = {2},
     year = {2022},
     doi = {10.24072/pcjournal.76},
     url = {}
AU  - Noël, Frédérique
AU  - Karamaoun, Cyril
AU  - Dempsey, Jerome A.
AU  - Mauroy, Benjamin
TI  - The origin of the allometric scaling of lung ventilation in mammals
JO  - Peer Community Journal
PY  - 2022
VL  - 2
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.76
ID  - 10_24072_pcjournal_76
ER  - 
%0 Journal Article
%A Noël, Frédérique
%A Karamaoun, Cyril
%A Dempsey, Jerome A.
%A Mauroy, Benjamin
%T The origin of the allometric scaling of lung ventilation in mammals
%J Peer Community Journal
%D 2022
%V 2
%I Peer Community In
%R 10.24072/pcjournal.76
%F 10_24072_pcjournal_76
Noël, Frédérique; Karamaoun, Cyril; Dempsey, Jerome A.; Mauroy, Benjamin. The origin of the allometric scaling of lung ventilation in mammals. Peer Community Journal, Volume 2 (2022), article  no. e2. doi : 10.24072/pcjournal.76.

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.mcb.100005

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Agostini, V.; Chiaramello, E.; Bredariol, C.; Cavallini, C.; Knaflitz, M. Postural control after traumatic brain injury in patients with neuro-ophthalmic deficits, Gait & Posture, Volume 34 (2011) no. 2, pp. 248-253 | DOI

[2] Agostoni, E.; Hyatt, R. E. Static Behavior of the Respiratory System, Comprehensive Physiology. Ed. by Ronald Terjung. Hoboken, NJ, USA: John Wiley & Sons, Inc, (1986), pp. 113-130 | DOI

[3] Altringham, J. D.; Young, I. S. Power output and the frequency of oscillatory work in mammalian diaphragm muscle: the effects of animal size, Journal of Experimental Biology, Volume 157 (1991) no. 1, pp. 381-389 | DOI

[4] Anderson Jr JD Fundamentals of aerodynamics, Tata McGraw-Hill Education, (2010)

[5] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V. B. Julia: A Fresh Approach to Numerical Computing, SIAM Review, Volume 59 (2017) no. 1, pp. 65-98 | DOI

[6] Bishop, C. M.; Spivey, R. J. Integration of exercise response and allometric scaling in endotherms, Journal of Theoretical Biology, Volume 323 (2013), pp. 11-19 | DOI

[7] Dempsey JA; Jacques AJ Respiratory System Response to Exercise in Health In: Fishman’s Pulmonary Diseases and Disorders. Ed. by Michael A. Grippi et al. 5th ed., McGraw- Hill Education, New York, NY ((2015))

[8] Dempsey, J. A.; La Gerche, A.; Hull, J. H. Is the healthy respiratory system built just right, overbuilt, or underbuilt to meet the demands imposed by exercise?, Journal of Applied Physiology, Volume 129 (2020) no. 6, pp. 1235-1256 | DOI

[9] Dhindsa, D.; Hoversland, A.; Metcalfe, J. Comparative studies of the respiratory functions of mammalian blood. VII Armadillo (Dasypus novemcinctus), Respiration Physiology, Volume 13 (1971) no. 2, pp. 198-208 | DOI

[10] Dubois de La Sablonière, X.; Mauroy, B.; Privat, Y. Shape minimization of the dissipated energy in dyadic trees, Discrete & Continuous Dynamical Systems - B, Volume 16 (2011) no. 3, pp. 767-799 | DOI

[11] Elad, D.; Kamm, R. D.; Shapiro, A. H. Steady compressible flow in collapsible tubes: application to forced expiration, Journal of Fluid Mechanics, Volume 203 (1989), pp. 401-418 | DOI

[12] Felici M Physics of the oxygen diffusion in the human lung, PhD thesis. Ecole Polytechnique X. ((2003))

[13] Florens, M.; Sapoval, B.; Filoche, M. Optimal Branching Asymmetry of Hydrodynamic Pulsatile Trees, Physical Review Letters, Volume 106 (2011) no. 17 | DOI

[14] Fregosi, R. F.; Dempsey, J. A. Arterial blood acid-base regulation during exercise in rats, Journal of Applied Physiology, Volume 57 (1984) no. 2, pp. 396-402 | DOI

[15] Gomes, R. F.; Bates, J. H. Geometric determinants of airway resistance in two isomorphic rodent species, Respiratory Physiology & Neurobiology, Volume 130 (2002) no. 3, pp. 317-325 | DOI

[16] Gunther, B. Dimensional analysis and theory of biological similarity, Physiological Reviews, Volume 55 (1975) no. 4, pp. 659-699 | DOI

[17] Günther B; De la Barra BL Physiometry of the mammalian circulatory system, Acta Physiologica Latino Americana, Volume 16 (1966), pp. 32-42

[18] Haefeli-Bleuer, B.; Weibel, E. R. Morphometry of the human pulmonary acinus, The Anatomical Record, Volume 220 (1988) no. 4, pp. 401-414 | DOI

[19] Haverkamp HC et al. Physiologic responses to exercise In: In: Physiologic basis of respiratory disease. Hamilton: BC Decker, Inc, p. 17. ((2005))

[20] Henke, K. G.; Sharratt, M.; Pegelow, D.; Dempsey, J. A. Regulation of end-expiratory lung volume during exercise, Journal of Applied Physiology, Volume 64 (1988) no. 1, pp. 135-146 | DOI

[21] Hill R et al The oxygen dissociation curve of haemoglobin in dilute solution, Proceedings of the Royal Society of London. Series B - Biological Sciences, Volume 120 (1936) no. 819, pp. 484-495 | DOI

[22] Hsia, C. C.; Hyde, D. M.; Weibel, E. R. Lung Structure and the Intrinsic Challenges of Gas Exchange, Comprehensive Physiology. Ed. by Ronald Terjung. Hoboken, NJ, USA, (2016), pp. 827-895 | DOI

[23] Hudson, L. N.; Isaac, N. J. B.; Reuman, D. C. The relationship between body mass and field metabolic rate among individual birds and mammals, Journal of Animal Ecology, Volume 82 (2013) no. 5, pp. 1009-1020 | DOI

[24] Huxley, J. S.; Teissier, G. Terminology of Relative Growth, Nature, Volume 137 (1936) no. 3471, pp. 780-781 | DOI

[25] Johnson AT Biomechanics and Exercise Physiology: Quantitative Modeling, CRC Press, (2007)

[26] Johnson, B. D.; Saupe, K. W.; Dempsey, J. A. Mechanical constraints on exercise hyperpnea in endurance athletes, Journal of Applied Physiology, Volume 73 (1992) no. 3, pp. 874-886 | DOI

[27] Karamaoun, C.; Sobac, B.; Mauroy, B.; Van Muylem, A.; Haut, B. New insights into the mechanisms controlling the bronchial mucus balance, PLOS ONE, Volume 13 (2018) no. 6 | DOI

[28] Kleiber, M. Body size and metabolism, Hilgardia, Volume 6 (1932) no. 11, pp. 315-353 | DOI

[29] Lindstedt, S. L. Pulmonary transit time and diffusing capacity in mammals, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, Volume 246 (1984) no. 3 | DOI

[30] Lodish H et al Molecular Cell Biology. Fifth Edition, W. H. Freeman, (2008)

[31] MacKlem, P. T. Physiology of Cough, Annals of Otology, Rhinology & Laryngology, Volume 83 (1974) no. 6, pp. 761-768 | DOI

[32] Maina, J. N.; van Gils, P. Morphometric characterization of the airway and vascular systems of the lung of the domestic pig, Sus scrofa: comparison of the airway, arterial and venous systems, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 130 (2001) no. 4, pp. 781-798 | DOI

[33] Matute-Bello, G.; Frevert, C. W.; Martin, T. R. Animal models of acute lung injury, American Journal of Physiology-Lung Cellular and Molecular Physiology, Volume 295 (2008) no. 3 | DOI

[34] Mauroy, B.; Filoche, M.; Andrade, J. S.; Sapoval, B. Interplay between Geometry and Flow Distribution in an Airway Tree, Physical Review Letters, Volume 90 (2003) no. 14 | DOI

[35] Mauroy, B.; Filoche, M.; Weibel, E. R.; Sapoval, B. An optimal bronchial tree may be dangerous, Nature, Volume 427 (2004) no. 6975, pp. 633-636 | DOI

[36] Mauroy B, (2014)

[37] Mauroy, B.; Bokov, P. The influence of variability on the optimal shape of an airway tree branching asymmetrically, Physical Biology, Volume 7 (2010) no. 1 | DOI

[38] Mauroy, B.; Fausser, C.; Pelca, D.; Merckx, J.; Flaud, P. Toward the modeling of mucus draining from the human lung: role of the geometry of the airway tree, Physical Biology, Volume 8 (2011) no. 5 | DOI

[39] Mauroy, B.; Flaud, P.; Pelca, D.; Fausser, C.; Merckx, J.; Mitchell, B. R. Toward the modeling of mucus draining from human lung: role of airways deformation on air-mucus interaction, Frontiers in Physiology, Volume 6 (2015) | DOI

[40] Mead, J. Control of respiratory frequency, Journal of Applied Physiology, Volume 15 (1960) no. 3, pp. 325-336 | DOI

[41] Metzger, R. J.; Klein, O. D.; Martin, G. R.; Krasnow, M. A. The branching programme of mouse lung development, Nature, Volume 453 (2008) no. 7196, pp. 745-750 | DOI

[42] Monteiro, A.; Smith, R. L. Bronchial tree Architecture in Mammals of Diverse Body Mass, International Journal of Morphology, Volume 32 (2014) no. 1, pp. 312-316 | DOI

[43] Noël F. al Code for The origin of the allometric scaling of lung’s ven- tilation in mammals., (2021)

[44] Noël, F.; Mauroy, B. Interplay Between Optimal Ventilation and Gas Transport in a Model of the Human Lung, Frontiers in Physiology, Volume 10 (2019) | DOI

[45] Otis, A. B.; Fenn, W. O.; Rahn, H. Mechanics of Breathing in Man, Journal of Applied Physiology, Volume 2 (1950) no. 11, pp. 592-607 | DOI

[46] Peters RH The ecological implications of body size. Vol. 2, Cambridge University Press, (1986)

[47] Powers, S. K. Is the lung built for exercise?, Journal of Applied Physiology, Volume 129 (2020) no. 6, pp. 1233-1234 | DOI

[48] Raabe O et al Tracheobronchial Geometry: Human, Dog, Rat, Hamster. Tech. rep. Albu- querque: NM: Lovelace Foundation for Medical Education and Research, (1976)

[49] Robertshaw, D. Mechanisms for the control of respiratory evaporative heat loss in panting animals, Journal of Applied Physiology, Volume 101 (2006) no. 2, pp. 664-668 | DOI

[50] Rocco, P. R. M.; Marini, J. J. What have we learned from animal models of ventilator-induced lung injury?, Intensive Care Medicine, Volume 46 (2020) no. 12, pp. 2377-2380 | DOI

[51] Rodriguez, M.; Bur, S.; Favre, A.; Weibel, E. R. Pulmonary acinus: Geometry and morphometry of the peripheral airway system in rat and rabbit, American Journal of Anatomy, Volume 180 (1987) no. 2, pp. 143-155 | DOI

[52] Sapoval, B.; Filoche, M.; Weibel, E. R. Smaller is better--but not too small: A physical scale for the design of the mammalian pulmonary acinus, Proceedings of the National Academy of Sciences, Volume 99 (2002) no. 16, pp. 10411-10416 | DOI

[53] Sobac B et al Allometric scaling of heat and water exchanges in the mammals’ lung, arXiv:1911.11700 ((2019))

[54] Speakman, J. R. The history and theory of the doubly labeled water technique, The American Journal of Clinical Nutrition, Volume 68 (1998) no. 4 | DOI

[55] Speakman, J. R.; Król, E. The Heat Dissipation Limit Theory and Evolution of Life Histories in Endotherms—Time to Dispose of the Disposable Soma Theory?, Integrative and Comparative Biology, Volume 50 (2010) no. 5, pp. 793-807 | DOI

[56] Stahl, W. R. Scaling of respiratory variables in mammals, Journal of Applied Physiology, Volume 22 (1967) no. 3, pp. 453-460 | DOI

[57] Tawhai, M. H.; Hunter, P.; Tschirren, J.; Reinhardt, J.; McLennan, G.; Hoffman, E. A. CT-based geometry analysis and finite element models of the human and ovine bronchial tree, Journal of Applied Physiology, Volume 97 (2004) no. 6, pp. 2310-2321 | DOI

[58] Tenney, S.; Bartlett, D. Comparative quantitative morphology of the mammalian lung: Trachea, Respiration Physiology, Volume 3 (1967) no. 2, pp. 130-135 | DOI

[59] Tenney, S.; Tenney, J. Quantitative morphology of cold-blooded lungs: Amphibia and reptilia, Respiration Physiology, Volume 9 (1970) no. 2, pp. 197-215 | DOI

[60] Weibel ER The Pathway for Oxygen: Structure and Function in the Mammalian Respiratory System, Harvard University Press, (1984)

[61] Weibel, E. R.; Bacigalupe, L. D.; Schmitt, B.; Hoppeler, H. Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor, Respiratory Physiology & Neurobiology, Volume 140 (2004) no. 2, pp. 115-132 | DOI

[62] Weibel ER; Cournand AF et al Morphometry of the Human Lung. 1 edition, Springer, (1963)

[63] Weibel, E. R.; Hoppeler, H. Exercise-induced maximal metabolic rate scales with muscle aerobic capacity, Journal of Experimental Biology, Volume 208 (2005) no. 9, pp. 1635-1644 | DOI

[64] West, G. B.; Brown, J. H.; Enquist, B. J. A General Model for the Origin of Allometric Scaling Laws in Biology, Science, Volume 276 (1997) no. 5309, pp. 122-126 | DOI

[65] West JB Respiratory Physiology: The Essentials. 9th Revised edition, Philadelphia: Lippincott Williams and Wilkins, (2011)

[66] White, C. R.; Seymour, R. S. Mammalian basal metabolic rate is proportional to body mass2/3, Proceedings of the National Academy of Sciences, Volume 100 (2003) no. 7, pp. 4046-4049 | DOI

[67] Witting L A general theory of evolution: by means of selection by density dependent competitive interactions, Peregrine Publisher, Århus, Denmark, (1997)

[68] Worthington, J.; Young, I.; Altringham, J. The relationship between body mass and ventilation rate in mammals, Journal of Experimental Biology, Volume 161 (1991) no. 1, pp. 533-536 | DOI

[69] Young, I. S.; Warren, R. D.; Altringham, J. D. Some properties of the mammalian locomotory and respiratory systems in relation to body mass, Journal of Experimental Biology, Volume 164 (1992) no. 1, pp. 283-294 | DOI

Cited by Sources: