Spatio-temporal diversity of dietary preferences and stress sensibilities of early and middle Miocene Rhinocerotidae from Eurasia: impact of climate changes

10.24072/pcjournal.222 - Peer Community Journal, Volume 3 (2023), article no. e5.

Get full text PDF Peer reviewed and recommended by PCI

Major climatic and ecological changes are documented in terrestrial ecosystems during the Miocene epoch. The Rhinocerotidae are a very interesting clade to investigate the impact of these changes on ecology, as they are abundant and diverse in the fossil record throughout the Miocene. Here, we explored the spatio-temporal evolution of rhinocerotids’ paleoecology during the early and middle Miocene of Europe and Pakistan. We studied the dental texture microwear (proxy for diet) and enamel hypoplasia (stress indicator) of 19 species belonging to four sub-tribes and an unnamed clade of Rhinocerotidae, and coming from nine Eurasian localities ranging from Mammal Neogene zone (MN) 2 to MN7/8. Our results suggest clear differences in the feeding ecology and thus niche partitioning at Kumbi 4 (MN2, Pakistan), Sansan (MN6, France), and Villefranche d’Astarac (MN7/8, France), while overlap of the interpreted diets and subtle variations are discussed for Béon 1 (MN4, France) and Gračanica (MN5/6, Bosnia-Herzegovina). All rhinocerotids studied were interpreted as browsers or mixed-feeders, and none had a grazer nor frugivore diet. The prevalence of hypoplasia was moderate (10%) to high (> 20%) at all localities but Kumbi 4 (6%), and documented quite well the local conditions. For instance, the high prevalence at the close to Miocene Climatic Optimum locality of Béon 1 (26%) has been correlated with periodical droughts, while the moderate ones (10%) at Sansan and Devínska Nová Ves Spalte (Slovakia) both dated from the MN6 (i.e., by the middle Miocene Climatic Transition, ca. 13.9 Mya) were linked to the persistence of sub-tropical local conditions. Besides locality, species and tooth locus were also important factors of variation for the prevalence of hypoplasia. The very large hippo-like Brachypotherium brachypus was one of the most affected species at all concerned localities (but Sansan), whereas early-diverging elasmotheriines were very little affected, suggesting an influence of phylogeny and/or diet in stress susceptibility.

Published online:
DOI: 10.24072/pcjournal.222
Hullot, Manon 1; Merceron, Gildas 2; Antoine, Pierre-Olivier 3

1 Bayerische Staatssammlung für Paläontologie und Geologie – Munich, Germany
2 PALEVOPRIM UMR 7262, CNRS, Université de Poitiers – Poitiers, France
3 Institut des Sciences de l’Évolution, UMR5554, Université de Montpellier, CNRS, IRD – Montpellier, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Hullot, Manon and Merceron, Gildas and Antoine, Pierre-Olivier},
     title = {Spatio-temporal diversity of dietary preferences and stress sensibilities of early and middle {Miocene} {Rhinocerotidae} from {Eurasia:} impact of climate changes},
     journal = {Peer Community Journal},
     eid = {e5},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.222},
     url = {}
AU  - Hullot, Manon
AU  - Merceron, Gildas
AU  - Antoine, Pierre-Olivier
TI  - Spatio-temporal diversity of dietary preferences and stress sensibilities of early and middle Miocene Rhinocerotidae from Eurasia: impact of climate changes
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
UR  -
DO  - 10.24072/pcjournal.222
ID  - 10_24072_pcjournal_222
ER  - 
%0 Journal Article
%A Hullot, Manon
%A Merceron, Gildas
%A Antoine, Pierre-Olivier
%T Spatio-temporal diversity of dietary preferences and stress sensibilities of early and middle Miocene Rhinocerotidae from Eurasia: impact of climate changes
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.222
%F 10_24072_pcjournal_222
Hullot, Manon; Merceron, Gildas; Antoine, Pierre-Olivier. Spatio-temporal diversity of dietary preferences and stress sensibilities of early and middle Miocene Rhinocerotidae from Eurasia: impact of climate changes. Peer Community Journal, Volume 3 (2023), article  no. e5. doi : 10.24072/pcjournal.222.

Peer reviewed and recommended by PCI : 10.24072/pci.paleo.100012

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Aiglstorfer, M.; Semprebon, G. M. Hungry for fruit? – A case study on the ecology of middle Miocene Moschidae (Mammalia, Ruminantia), Geodiversitas, Volume 41 (2019) no. 1 | DOI

[2] Aiglstorfer, M.; Rössner, G.; Böhme, M. Dorcatherium naui and pecoran ruminants from the late Middle Miocene Gratkorn locality (Austria), Palaeobiodiversity and Palaeoenvironments, Volume 94 (2019), pp. 83-123 | DOI

[3] Antoine, P.-O. Phylogénie et évolution des Elasmotheriina (Mammalia, Rhinocerotidae), Mémoires Du Muséum National d’Histoire Naturelle, Volume 188 (2022), pp. 5-350

[4] Antoine, P.-O. Rhinocerotids from the Siwalik faunal sequence, At the Foot of the Himalayas: Paleontology and Ecosystem Dynamics of the Siwalik Record of Pakistan, Johns Hopkins University Press, Baltimore, in press

[5] Antoine, P.-O.; Duranthon, F. Découverte de Protaceratherium minutum (Mammalia, Rhinocerotidae) dans le gisement Orléanien (MN 4) de Montréal-du-Gers (Gers), Annales de Paléontologie, Volume 83 (1997), pp. 201-213

[6] Antoine, P.-O.; Welcomme, J.-L. A New Rhinoceros From The Lower Miocene Of The Bugti Hills, Baluchistan, Pakistan: The Earliest Elasmotheriine, Palaeontology, Volume 43 (2000), pp. 795-816 | DOI

[7] Antoine, P.-O.; Becker, D. A brief review of Agenian rhinocerotids in Western Europe, Swiss Journal of Geosciences, Volume 106 (2013), pp. 135-146 | DOI

[8] Antoine, P.-O.; Duranthon, F.; Tassy, P. L’apport des grands mammifères (Rhinocérotidés, Suoidés, Proboscidiens) à la connaissance des gisements du Miocène d’Aquitaine (France), BioChro’M97, Volume 21 (1997), pp. 581-590

[9] Antoine, P.-O.; Reyes, M.; Amano, N.; Bautista, A.; Chang, C.-H.; Claude, J.; Vos, J.; Ingicco, T. A new rhinoceros clade from the Pleistocene of Asia sheds light on mammal dispersals to the Philippines, Zoological Journal of the Linnean Society, Volume 194 (2022), pp. 416-430 | DOI

[10] Antoine, P.-O.; Downing, K.; Crochet, J.-Y.; Duranthon, F.; Flynn, L.; Marivaux, L.; Métais, G.; Rajpar, A.; Roohi, G. A revision of Aceratherium blanfordi Lydekker, 1884 (Mammalia: Rhinocerotidae) from the Early Miocene of Pakistan: postcranials as a key, Zoological Journal of the Linnean Society, Volume 160 (2010), pp. 139-194 | DOI

[11] Antoine, P.-O.; Métais, G.; Orliac, M.; Crochet, J.; Flynn, L.; Marivaux, L.; Rajpar, A.; Roohi, G.; Welcomme, J. Mammalian Neogene biostratigraphy of the Sulaiman Province, Pakistan, Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology, Columbia University Press, 2013, pp. 400-422 | DOI

[12] Arman, S.; Prowse, T.; Couzens, A.; Ungar, P.; Prideaux, G. Incorporating intraspecific variation into dental microwear texture analysis, Journal of The Royal Society Interface, Volume 16 (2019) no. 20180957 | DOI

[13] Arsenault, R.; Owen-Smith, N. Resource partitioning by grass height among grazing ungulates does not follow body size relation, Oikos, Volume 117 (2008), pp. 1711-1717 | DOI

[14] Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4, Journal of Statistical Software, Volume 67 (2015), pp. 1-48 | DOI

[15] Becker, D.; Tissier, J. Rhinocerotidae from the early middle Miocene locality Gračanica (Bugojno Basin, Bosnia-Herzegovina, Palaeobiodiversity and Palaeoenvironments, Volume 100 (2020), pp. 395-412 | DOI

[16] Becker, D.; Antoine, P.-O.; Maridet, O. A new genus of Rhinocerotidae (Mammalia, Perissodactyla) from the Oligocene of Europe, Journal of Systematic Palaeontology, Volume 11 (2013), pp. 947-972 | DOI

[17] Bentaleb, I.; Langlois, C.; Martin, C.; Iacumin, P.; Carré, M.; Antoine, P.-O.; Duranthon, F.; Moussa, I.; Jaeger, J.-J.; Barrett, N. Rhinocerotid tooth enamel 18O/16O variability between 23 and 12 Ma in southwestern France, Comptes Rendus Geoscience, Volume 338 (2006), pp. 172-179 | DOI

[18] Berlioz, É.; Kostopoulos, D.; Blondel, C.; Merceron, G. Feeding ecology of Eucladoceros ctenoides as a proxy to track regional environmental variations in Europe during the early Pleistocene, Comptes Rendus Palevol, Volume 17 (2018), pp. 320-332 | DOI

[19] Blanchet, F.; Cazelles, K.; Gravel, D. Co-occurrence is not evidence of ecological interactions, Ecology Letters, Volume 23 (2020), pp. 1050-1063 | DOI

[20] Böhme, M. The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 195 (2003), pp. 389-401 | DOI

[21] Böhme, M.; Ilg, A.; Winklhofer, M. Late Miocene “washhouse” climate in Europe, Earth and Planetary Science Letters, Volume 275 (2008), pp. 393-401 | DOI

[22] Böhme, M.; Winklhofer, M.; Ilg, A. Miocene precipitation in Europe: Temporal trends and spatial gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 304 (2011), pp. 212-218 | DOI

[23] Böhmer, C.; Heissig, K.; Rössner, G. Dental Eruption Series and Replacement Pattern in Miocene Prosantorhinus (Rhinocerotidae) as Revealed by Macroscopy and X-ray: Implications for Ontogeny and Mortality Profile, Journal of Mammalian Evolution, Volume 23 (2016), pp. 265-279 | DOI

[24] Bruch, A.; Uhl, D.; Mosbrugger, V. Miocene climate in Europe — Patterns and evolution: A first synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 253 (2007), pp. 1-7 | DOI

[25] Butler, P. The milk-molars of Perissodactyla, with remarks on molar occlusion, Proceedings of the Zoological Society of London, Volume 121 (1952), pp. 777-817 | DOI

[26] Butzmann, R.; Göhlich, U.; Bassler, B.; Krings, M. Macroflora and charophyte gyrogonites from the middle Miocene Gračanica deposits in central Bosnia and Herzegovina, Palaeobiodiversity and Palaeoenvironments, Volume 100 (2020), pp. 479-491 | DOI

[27] Calandra, I.; Göhlich, U.; Merceron, G. How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe, Die Naturwissenschaften, Volume 95 (2008), pp. 831-838 | DOI

[28] Cerdeño, E. Diversity and evolutionary trends of the Family Rhinocerotidae (Perissodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 141 (1998), pp. 13-34 | DOI

[29] Cerdeño, E.; Nieto, M. Changes in Western European Rhinocerotidae related to climatic variations. Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 114 (1995), pp. 325-338

[30] Cerling, T.; Harris, J.; MacFadden, B.; Leakey, M.; Quade, J.; Eisenmann, V.; Ehleringer, J. Global vegetation change through the Miocene/Pliocene boundary, Nature, Volume 389 (1997), pp. 153-158 | DOI

[31] Clementz, M. T. New insight from old bones: stable isotope analysis of fossil mammals, Journal of Mammalogy, Volume 93 (2012) no. 2, pp. 368-380 | DOI

[32] Costeur, L.; Guérin, C.; Maridet, O. Paléoécologie et paléoenvironnement du site miocène de Sansan, Mammifères de Sansan, Mémoires du Muséum national d’Histoire naturelle, Volume 203, Paris, 2012, pp. 661-693

[33] Damuth, J.; Janis, C. M. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology, Biological Reviews, Volume 86 (2011) no. 3, pp. 733-758 | DOI

[34] Duranthon, F.; Antoine, P.-O.; Bulot, C.; Capdeville, J. Le Miocène inférieur et moyen continental du bassin d’Aquitaine Livret-guide de l’excursion des Journées Crouzel (10 et 11 juillet 1999), Bulletin de La Société d’histoire Naturelle de Toulouse, Volume 135 (199), pp. 79-91

[35] Eronen, J.; Rössner, G. Wetland paradise lost: Miocene community dynamics in large herbivorous mammals from the German Molasse Basin, Evolutionary Ecology Research, Volume 9 (2007), pp. 471-494

[36] Internationale Fédération Dentaire An epidemiological index of development defects of dental enamel (DDE index), International Dental Journal, Volume 42 (1982), pp. 411-426

[37] Fox, J.; Weisberg, S.; Adler, D.; Bates, D.; Baud-Bovy, G.; Ellison, S.; Firth, D.; Friendly, M.; Gorjanc, G.; Graves, S. Package ‘car, R Foundation for Statistical Computing, Vienna, 2012

[38] Fritz, H.; Duncan, P.; Gordon, I. J.; Illius, A. W. Megaherbivores influence trophic guilds structure in African ungulate communities, Oecologia, Volume 131 (2002) no. 4, pp. 620-625 | DOI

[39] Giaourtsakis, I.; Theodorou, G.; Roussiakis, S.; Athanassiou, A.; Iliopoulos, G. Late Miocene horned rhinoceroses (Rhinocerotinae, Mammalia) from Kerassia (Euboea, Greece), Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, Volume 239 (2006) no. 3, pp. 367-398 | DOI

[40] Göhlich, U. B.; Mandic, O. Introduction to the special issue “The drowning swamp of Gračanica (Bosnia-Herzegovina)—a diversity hotspot from the middle Miocene in the Bugojno Basin”, Palaeobiodiversity and Palaeoenvironments, Volume 100 (2020) no. 2, pp. 281-293 | DOI

[41] Goodman, A. H.; Rose, J. C. Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures, American Journal of Physical Anthropology, Volume 33 (1990) no. S11, pp. 59-110 | DOI

[42] Grine, F. Dental evidence for dietary differences in Australopithecus and Paranthropus: a quantitative analysis of permanent molar microwear, Journal of Human Evolution, Volume 15 (1986), pp. 783-822

[43] Heissig, K. Les Rhinocerotidae (Perissodactyla) de Sansan, Mammifères de Sansan, Volume 203, Mémoires du Muséum national d’Histoire naturelle, Paris, 2012, pp. 317-485

[44] Hillman-Smith, A.; Owen-Smith, N.; Anderson, J.; Hall-Martin, A.; Selaladi, J. Age estimation of the white rhinoceros (Ceratotherium simum), Journal of Zoology, Volume 210 (1986), pp. 355-377

[45] Hitchins, P. Age determination of the black rhinoceros (Diceros bicornis Linn.) in Zululand, South African Journal of Wildlife Research, Volume 8 (1978), pp. 71-80

[46] Hoffman, J. M.; Fraser, D.; Clementz, M. T. Controlled feeding trials with ungulates: a new application of <i>in vivo</i> dental molding to assess the abrasive factors of microwear, Journal of Experimental Biology (2015) | DOI

[47] Holbourn, A.; Kuhnt, W.; Lyle, M.; Schneider, L.; Romero, O.; Andersen, N. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling, Geology, Volume 42 (2013) no. 1, pp. 19-22 | DOI

[48] Hullot, M.; Antoine, P.-O. Mortality curves and population structures of late early Miocene Rhinocerotidae (Mammalia, Perissodactyla) remains from the Béon 1 locality of Montréal-du-Gers, France, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 558 (2020) | DOI

[49] Hullot, M.; Antoine, P.-O.; Ballatore, M.; Merceron, G. Dental microwear textures and dietary preferences of extant rhinoceroses (Perissodactyla, Mammalia), Mammal Research, Volume 64 (2019) no. 3, pp. 397-409 | DOI

[50] Hullot, M.; Laurent, Y.; Merceron, G.; Antoine, P.-O. Paleoecology of the Rhinocerotidae (Mammalia, Perissodactyla) from Béon 1, Montréal-du-Gers (late early Miocene, SW France): Insights from dental microwear texture analysis, mesowear, and enamel hypoplasia, Palaeontologia Electronica, Volume 24 (2021), pp. 1-26 | DOI

[51] Hullot, M.; Antoine, P.-O.; Spassov, N.; Koufos, G. D.; Merceron, G. Late Miocene rhinocerotids from the Balkan-Iranian province: ecological insights from dental microwear textures and enamel hypoplasia, Historical Biology, Volume NA (2022), pp. 1-18 | DOI

[52] Hutchinson, G. Homage to Santa Rosalia or why are there so many kinds of animals?, The American Naturalist, Volume 93 (1959), pp. 145-159

[53] Inigo, C.; Cerdeño, E. The Hispanotherium matritense(Rhinocerotidae) from Córcoles (Guadalajara, Spain): Its contribution to the systematics of the Miocene Iranotheriina, Geobios, Volume 30 (1997) no. 2, pp. 243-266 | DOI

[54] Janis, C. An Evolutionary History of Browsing and Grazing Ungulates, Ecological Studies, Springer, Berlin, Heidelberg, 2008, pp. 21-45 | DOI

[55] Janis, C. An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preferences, Memoires Du Museum National d’Histoire Naturelle (1988) (serie C, 53:367–387.)

[56] Jardine, P. E.; Janis, C. M.; Sahney, S.; Benton, M. J. Grit not grass: Concordant patterns of early origin of hypsodonty in Great Plains ungulates and Glires, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 365-366 (2012), pp. 1-10 | DOI

[57] Jones, D. B.; Desantis, L. R. Dietary ecology of ungulates from the La Brea tar pits in southern California: A multi-proxy approach, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 466 (2017), pp. 110-127 | DOI

[58] Kaiser, T. M. Anchitherium aurelianense (Equidae, Mammalia): a brachydont “dirty browser” in the community of herbivorous large mammals from Sandelzhausen (Miocene, Germany), Paläontologische Zeitschrift, Volume 83 (2009) no. 1, pp. 131-140 | DOI

[59] Landman, M.; Schoeman, D. S.; Kerley, G. I. H. Shift in Black Rhinoceros Diet in the Presence of Elephant: Evidence for Competition?, PLoS ONE, Volume 8 (2013) no. 7 | DOI

[60] Larramendi, A. Proboscideans: Shoulder Height, Body Mass and Shape, Acta Palaeontologica Polonica (2015) | DOI

[61] Legendre, S.; Montuire, S.; Maridet, O.; Escarguel, G. Rodents and climate: A new model for estimating past temperatures, Earth and Planetary Science Letters, Volume 235 (2005) no. 1-2, pp. 408-420 | DOI

[62] Loponen, L. Diets of Miocene proboscideans from Eurasia, and their connection to environments and vegetation, Master Thesis, University of Helsinki, Finland, 2020, p. 54

[63] Louail, M.; Ferchaud, S.; Souron, A.; Walker, A. E.; Merceron, G. Dental microwear textures differ in pigs with overall similar diets but fed with different seeds, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 572 (2021) | DOI

[64] MacFadden, B. Fossil Horses: Systematics, Paleobiology, and Evolution of the Family Equidae, Cambridge University Press, New York, 1992, p. 369

[65] Maridet, O.; Sen, S. Les Cricetidae (Rodentia) de Sansan, Mammifères de Sansan, Volume 203, Mémoires du Muséum Paris, 2012, pp. 29-65

[66] Maridet, O.; Escarguel, G.; Costeur, L.; Mein, P.; Hugueney, M.; Legendre, S. Small mammal (rodents and lagomorphs) European biogeography from the Late Oligocene to the mid Pliocene, Global Ecology and Biogeography, Volume 16 (2007) no. 4, pp. 529-544 | DOI

[67] Martin, C.; Bentaleb, I.; Antoine, P.-O. Pakistan mammal tooth stable isotopes show paleoclimatic and paleoenvironmental changes since the early Oligocene, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 311 (2011) no. 1-2, pp. 19-29 | DOI

[68] Mead, A. Enamel hypoplasia in Miocene rhinoceroses (Teleoceras) from Nebraska: evidence of severe physiological stress, Journal of Vertebrate Paleontology, Volume 19 (1999), pp. 391-397

[69] Merceron, G.; Kallend, A.; Francisco, A.; Louail, M.; Martin, F.; Plastiras, C.-A.; Thiery, G.; Boisserie, J.-R. Further away with dental microwear analysis: Food resource partitioning among Plio-Pleistocene monkeys from the Shungura Formation, Ethiopia, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 572 (2021) | DOI

[70] Merceron, G.; Ramdarshan, A.; Blondel, C.; Boisserie, J.-R.; Brunetiere, N.; Francisco, A.; Gautier, D.; Milhet, X.; Novello, A.; Pret, D. Untangling the environmental from the dietary: dust does not matter, Proceedings of the Royal Society B: Biological Sciences, Volume 283 (2016) no. 1838 | DOI

[71] Metcalfe, J. Z.; Longstaffe, F. J.; Zazula, G. D. Nursing, weaning, and tooth development in woolly mammoths from Old Crow, Yukon, Canada: Implications for Pleistocene extinctions, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 298 (2010) no. 3-4, pp. 257-270 | DOI

[72] Mihlbachler, M. C.; Rivals, F.; Solounias, N.; Semprebon, G. M. Dietary Change and Evolution of Horses in North America, Science, Volume 331 (2011) no. 6021, pp. 1178-1181 | DOI

[73] Mihlbachler, M. C.; Campbell, D.; Ayoub, M.; Chen, C.; Ghani, I. Comparative dental microwear of ruminant and perissodactyl molars: Implications for paleodietary analysis of rare and extinct ungulate clades, Paleobiology, Volume 42 (2015) no. 1, pp. 98-116 | DOI

[74] Mihlbachler, M. C.; Campbell, D.; Chen, C.; Ayoub, M.; Kaur, P. Microwear–mesowear congruence and mortality bias in rhinoceros mass-death assemblages, Paleobiology, Volume 44 (2017) no. 1, pp. 131-154 | DOI

[75] Niven, L. B.; Egeland, C. P.; Todd, L. C. An inter-site comparison of enamel hypoplasia in bison: implications for paleoecology and modeling Late Plains Archaic subsistence, Journal of Archaeological Science, Volume 31 (2004) no. 12, pp. 1783-1794 | DOI

[76] Owen-Smith, N. Megaherbivores: The Influence of Very Large Body Size on Ecology, Cambridge University Press, 1988, p. 392

[77] Peigné, S.; Sen, S. Mammifères de Sansan, Mémoires du Muséum national d’Histoire naturelle, Muséum national d’Histoire naturelle (212), p. 709

[78] Prothero, D. The Evolution of North American Rhinoceroses, Cambridge University Press, 2005, p. 232

[79] Prothero, D.; Guérin, C.; Manning, E. The history of the Rhinocerotoidea, The Evolution of Perissodactyls, Oxford University Press, New York, 1989, pp. 322-340

[80] Ramdarshan, A.; Blondel, C.; Gautier, D.; Surault, J.; Merceron, G. Overcoming sampling issues in dental tribology: Insights from an experimentation on sheep, Palaeontologia Electronica, Volume 20 (2017) | DOI

[81] Ramdarshan, A.; Blondel, C.; Brunetière, N.; Francisco, A.; Gautier, D.; Surault, J.; Merceron, G. Seeds, browse, and tooth wear: a sheep perspective, Ecology and Evolution, Volume 6 (2016) no. 16, pp. 5559-5569 | DOI

[82] Rivals, F.; Semprebon, G.; Lister, A. An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Palaeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear, Quaternary International, Volume 255 (2012), pp. 188-195 | DOI

[83] Rivals, F.; Takatsuki, S.; Albert, R. M.; Macià, L. Bamboo feeding and tooth wear of three sika deer (<i>Cervus nippon</i>) populations from northern Japan, Journal of Mammalogy, Volume 95 (2014) no. 5, pp. 1043-1053 | DOI

[84] Rivals, F.; Prilepskaya, N. E.; Belyaev, R. I.; Pervushov, E. M. Dramatic change in the diet of a late Pleistocene Elasmotherium population during its last days of life: Implications for its catastrophic mortality in the Saratov region of Russia, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 556 (2020) | DOI

[85] Roohi, G.; Raza, S.; Khan, A.; Ahmad, R.; Akhtar, M. Enamel Hypoplasia in Siwalik Rhinocerotids and its Correlation with Neogene Climate, Pakistan Journal of Zoology, Volume 47 (2015), pp. 1433-1443

[86] Sabol, M.; Kováč, M. Badenian palaeoenvironment, faunal succession and biostratigraphy: a case study from northern Vienna Basin, Devínska Nová Ves-Bonanza site (Western Carpathians, Slovakia, Beiträge Zur Paläontologie, Volume 30 (2006), pp. 415-425

[87] Scott, J. R. Dental microwear texture analysis of extant African Bovidae, mammalia, Volume 76 (2012) no. 2 | DOI

[88] Scott, R. S.; Ungar, P. S.; Bergstrom, T. S.; Brown, C. A.; Grine, F. E.; Teaford, M. F.; Walker, A. Dental microwear texture analysis shows within-species diet variability in fossil hominins, Nature, Volume 436 (2005) no. 7051, pp. 693-695 | DOI

[89] Scott, R. S.; Ungar, P. S.; Bergstrom, T. S.; Brown, C. A.; Childs, B. E.; Teaford, M. F.; Walker, A. Dental microwear texture analysis: technical considerations, Journal of Human Evolution, Volume 51 (2006) no. 4, pp. 339-349 | DOI

[90] Semprebon, G. M.; Rivals, F. Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to Recent Antilocapridae (Mammalia: Artiodactyla), Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 253 (2007) no. 3-4, pp. 332-347 | DOI

[91] Semprebon, G. M.; Sise, P. J.; Coombs, M. C. Potential Bark and Fruit Browsing as Revealed by Stereomicrowear Analysis of the Peculiar Clawed Herbivores Known as Chalicotheres (Perissodactyla, Chalicotherioidea), Journal of Mammalian Evolution, Volume 18 (2010) no. 1, pp. 33-55 | DOI

[92] Semprebon, G. M.; Rivals, F.; Janis, C. M. The Role of Grass vs. Exogenous Abrasives in the Paleodietary Patterns of North American Ungulates, Frontiers in Ecology and Evolution, Volume 7 (2019) | DOI

[93] Sen, S.; Ginsburg, L. La magnétostratigraphie du site de Sansan, Memoires Du Museum National d’Histoire Natural de Paris, Volume 183 (2000), pp. 69-81

[94] Stefaniak, K.; Stachowicz-Rybka, R.; Borówka, R. K.; Hrynowiecka, A.; Sobczyk, A.; Moskal-del Hoyo, M.; Kotowski, A.; Nowakowski, D.; Krajcarz, M. T.; Billia, E. M.; Persico, D.; Burkanova, E. M.; Leshchinskiy, S. V.; van Asperen, E.; Ratajczak, U.; Shpansky, A. V.; Lempart, M.; Wach, B.; Niska, M.; van der Made, J.; Stachowicz, K.; Lenarczyk, J.; Piątek, J.; Kovalchuk, O. Browsers, grazers or mix-feeders? Study of the diet of extinct Pleistocene Eurasian forest rhinoceros Stephanorhinus kirchbergensis (Jäger, 1839) and woolly rhinoceros Coelodonta antiquitatis (Blumenbach, 1799), Quaternary International, Volume 605-606 (2021), pp. 192-212 | DOI

[95] Tafforeau, P.; Bentaleb, I.; Jaeger, J.-J.; Martin, C. Nature of laminations and mineralization in rhinoceros enamel using histology and X-ray synchrotron microtomography: Potential implications for palaeoenvironmental isotopic studies, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 246 (2007) no. 2-4, pp. 206-227 | DOI

[96] Tissier, J.; Antoine, P.-O.; Becker, D. New material of <i>Epiaceratherium </i>and a new species of <i>Mesaceratherium</i> clear up the phylogeny of early Rhinocerotidae (Perissodactyla), Royal Society Open Science, Volume 7 (2020) no. 7 | DOI

[97] Tütken, T.; Vennemann, T.; Janz, H.; Heizmann, E. Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: A reconstruction from C, O, and Sr isotopes of fossil remains, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 241 (2006) no. 3-4, pp. 457-491 | DOI

[98] Tütken, T.; Kaiser, T. M.; Vennemann, T.; Merceron, G. Opportunistic Feeding Strategy for the Earliest Old World Hypsodont Equids: Evidence from Stable Isotope and Dental Wear Proxies, PLoS ONE, Volume 8 (2013) no. 9 | DOI

[99] Upex, B.; Dobney, K. Dental enamel hypoplasia as indicators of seasonal environmental and physiological impacts in modern sheep populations: a model for interpreting the zooarchaeological record, Journal of Zoology, Volume 287 (2012) no. 4, pp. 259-268 | DOI

[100] van der Made, J. Suoidea (Artiodactyla), Geology and paleontology of the Miocene Sinap Formation, Columbia University Press, New York, 2003, pp. 308-327

[101] Venables, W.; Ripley, B. Modern Applied Statistics with S, Springer, New York, 2002, p. 498

[102] Wang, B.; Secord, R. Paleoecology of Aphelops and Teleoceras (Rhinocerotidae) through an interval of changing climate and vegetation in the Neogene of the Great Plains, central United States, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 542 (2020) | DOI

[103] Wasserstein, R. L.; Lazar, N. A. The ASA Statement on <i>p</i>-Values: Context, Process, and Purpose, The American Statistician, Volume 70 (2016) no. 2, pp. 129-133 | DOI

[104] Wasserstein, R. L.; Schirm, A. L.; Lazar, N. A. Moving to a World Beyond “<i>p</i>0.05”, The American Statistician, Volume 73 (2019) no. sup1, pp. 1-19 | DOI

[105] Westerhold, T.; Marwan, N.; Drury, A. J.; Liebrand, D.; Agnini, C.; Anagnostou, E.; Barnet, J. S. K.; Bohaty, S. M.; De Vleeschouwer, D.; Florindo, F.; Frederichs, T.; Hodell, D. A.; Holbourn, A. E.; Kroon, D.; Lauretano, V.; Littler, K.; Lourens, L. J.; Lyle, M.; Pälike, H.; Röhl, U.; Tian, J.; Wilkens, R. H.; Wilson, P. A.; Zachos, J. C. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years, Science, Volume 369 (2020) no. 6509, pp. 1383-1387 | DOI

[106] Wickham, H. Reshaping Data with the <b>reshape</b> Package, Journal of Statistical Software, Volume 21 (2007) no. 12 | DOI

[107] Wickham, H. ggplot2, Wiley Interdisciplinary Reviews: Computational Statistics, Volume 3 (2011) no. 2, pp. 180-185 | DOI

[108] Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation, R Package Version, Volume 0 no. 8.3, p. 2020

[109] Winkler, D. E.; Schulz-Kornas, E.; Kaiser, T. M.; Codron, D.; Leichliter, J.; Hummel, J.; Martin, L. F.; Clauss, M.; Tütken, T. The turnover of dental microwear texture: Testing the” last supper” effect in small mammals in a controlled feeding experiment, Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 557 (2020) | DOI

[110] Xafis, A.; Saarinen, J.; Bastl, K.; Nagel, D.; Grímsson, F. Palaeodietary traits of large mammals from the middle Miocene of Gračanica (Bugojno Basin, Bosnia-Herzegovina), Palaeobiodiversity and Palaeoenvironments, Volume 100 (2020) no. 2, pp. 457-477 | DOI

[111] Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, Volume 292 (2001) no. 5517, pp. 686-693 | DOI

Cited by Sources: