Section: Ecology
Topic: Ecology, Applied biological sciences

Ten simple rules for working with high resolution remote sensing data

10.24072/pcjournal.223 - Peer Community Journal, Volume 3 (2023), article no. e4.

Get full text PDF Peer reviewed and recommended by PCI

Researchers in Earth and environmental science can extract incredible value from high- resolution (sub-meter, sub-hourly or hyper-spectral) remote sensing data, but these data can be difficult to use. Correct, appropriate and competent use of such data requires skills from remote sensing and the data sciences that are rarely taught together. In practice, many researchers teach themselves how to use high-resolution remote sensing data with ad hoc trial and error processes, often resulting in wasted effort and resources. In order to implement a consistent strategy, we outline ten rules with examples from Earth and environmental science to help academic researchers and professionals in industry work more effectively and competently with high-resolution data.

Published online:
DOI: 10.24072/pcjournal.223
Type: Opinion, perspective
Mahood, Adam L. 1, 2, 3; Joseph, Maxwell B. 1; Spiers, Anna I. 1, 4; Koontz, Michael J. 1; Ilangakoon, Nayani 1; Solvik, Kylen K. 1, 2; Quarderer, Nathan 1; McGlinchy, Joe 1, 5; Scholl, Victoria M. 1, 2; St. Denis, Lise A. 1; Nagy, Chelsea 1, 6; Braswell, Anna 7, 8; Rossi, Matthew W. 1; Herwehe, Lauren 1, 2; Wasser, Leah 1, 2; Cattau, Megan E. 9; Iglesias, Virginia 1; Yao, Fangfang 1; Leyk, Stefan 1, 2, 10; Balch, Jennifer K. 1, 2, 6

1 Earth Lab, University of Colorado, Boulder - CO, USA
2 Department of Geography, University of Colorado, Boulder - CO, USA
3 Water Resources, USDA-ARS, Fort Collins, CO, USA
4 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder - CO, USA
5 Hydrostat, Inc. - Washington, DC, USA
6 Environmental Data Science Innovation and Inclusion Lab, University of Colorado, Boulder - CO, USA
7 School of Forest, Fisheries, and Geomatic Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - FL, USA
8 Florida Sea Grant, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - FL, USA
9 Department of Human-Environment Systems, Boise State University, Boise - ID, USA
10 Institute of Behavioral Science, University of Colorado, Boulder - CO, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Mahood, Adam L. and Joseph, Maxwell B. and Spiers, Anna I. and Koontz, Michael J. and Ilangakoon, Nayani and Solvik, Kylen K. and Quarderer, Nathan and McGlinchy, Joe and Scholl, Victoria M. and St. Denis, Lise A. and Nagy, Chelsea and Braswell, Anna and Rossi, Matthew W. and Herwehe, Lauren and Wasser, Leah and Cattau, Megan E. and Iglesias, Virginia and Yao, Fangfang and Leyk, Stefan and Balch, Jennifer K.},
     title = {Ten simple rules for working with high resolution remote sensing data},
     journal = {Peer Community Journal},
     eid = {e4},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.223},
     url = {}
AU  - Mahood, Adam L.
AU  - Joseph, Maxwell B.
AU  - Spiers, Anna I.
AU  - Koontz, Michael J.
AU  - Ilangakoon, Nayani
AU  - Solvik, Kylen K.
AU  - Quarderer, Nathan
AU  - McGlinchy, Joe
AU  - Scholl, Victoria M.
AU  - St. Denis, Lise A.
AU  - Nagy, Chelsea
AU  - Braswell, Anna
AU  - Rossi, Matthew W.
AU  - Herwehe, Lauren
AU  - Wasser, Leah
AU  - Cattau, Megan E.
AU  - Iglesias, Virginia
AU  - Yao, Fangfang
AU  - Leyk, Stefan
AU  - Balch, Jennifer K.
TI  - Ten simple rules for working with high resolution remote sensing data
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.223
ID  - 10_24072_pcjournal_223
ER  - 
%0 Journal Article
%A Mahood, Adam L.
%A Joseph, Maxwell B.
%A Spiers, Anna I.
%A Koontz, Michael J.
%A Ilangakoon, Nayani
%A Solvik, Kylen K.
%A Quarderer, Nathan
%A McGlinchy, Joe
%A Scholl, Victoria M.
%A St. Denis, Lise A.
%A Nagy, Chelsea
%A Braswell, Anna
%A Rossi, Matthew W.
%A Herwehe, Lauren
%A Wasser, Leah
%A Cattau, Megan E.
%A Iglesias, Virginia
%A Yao, Fangfang
%A Leyk, Stefan
%A Balch, Jennifer K.
%T Ten simple rules for working with high resolution remote sensing data
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.223
%F 10_24072_pcjournal_223
Mahood, Adam L.; Joseph, Maxwell B.; Spiers, Anna I.; Koontz, Michael J.; Ilangakoon, Nayani; Solvik, Kylen K.; Quarderer, Nathan; McGlinchy, Joe; Scholl, Victoria M.; St. Denis, Lise A.; Nagy, Chelsea; Braswell, Anna; Rossi, Matthew W.; Herwehe, Lauren; Wasser, Leah; Cattau, Megan E.; Iglesias, Virginia; Yao, Fangfang; Leyk, Stefan; Balch, Jennifer K. Ten simple rules for working with high resolution remote sensing data. Peer Community Journal, Volume 3 (2023), article  no. e4. doi : 10.24072/pcjournal.223.

Peer reviewed and recommended by PCI : 10.24072/pci.ecology.100102

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows, Remote Sensing, Volume 10 (2018) no. 7 | DOI

[2] Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling, International Journal of Climatology, Volume 33 (2011) no. 1, pp. 121-131 | DOI

[3] Abolt, C. J.; Young, M. H. High-resolution mapping of spatial heterogeneity in ice wedge polygon geomorphology near Prudhoe Bay, Alaska, Scientific Data, Volume 7 (2020) no. 1 | DOI

[4] Agumya, A.; Hunter, G. J. A Risk-Based Approach to Assessing the Fitness for Use of Spatial Data, URISA Journal, Volume 11 (1999), pp. 33-44

[5] Alon, U. How To Choose a Good Scientific Problem, Molecular Cell, Volume 35 (2009) no. 6, pp. 726-728 | DOI

[6] Anderson, K.; Gaston, K. J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology, Frontiers in Ecology and the Environment, Volume 11 (2013) no. 3, pp. 138-146 | DOI

[7] Asner, G. P.; Knapp, D. E.; Martin, R. E.; Tupayachi, R.; Anderson, C. B.; Mascaro, J.; Sinca, F.; Chadwick, K. D.; Higgins, M.; Farfan, W.; Llactayo, W.; Silman, M. R. Targeted carbon conservation at national scales with high-resolution monitoring, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 47 | DOI

[8] Balch, J. K.; Abatzoglou, J. T.; Joseph, M. B.; Koontz, M. J.; Mahood, A. L.; McGlinchy, J.; Cattau, M. E.; Williams, A. P. Warming weakens the night-time barrier to global fire, Nature, Volume 602 (2022) no. 7897, pp. 442-448 | DOI

[9] Berman, G. S.; de la Rosa, S.; Accone, T.; et al. Ethical Considerations When Using Geospatial Technologies for Evidence Generation, Innocenti Discussion Papers, no. 2018-02, UNICEF Office of Research - Innocenti, Florence, 2018 (

[10] Betts, M. G.; Hadley, A. S.; Frey, D. W.; Frey, S. J. K.; Gannon, D.; Harris, S. H.; Kim, H.; Kormann, U. G.; Leimberger, K.; Moriarty, K.; Northrup, J. M.; Phalan, B.; Rousseau, J. S.; Stokely, T. D.; Valente, J. J.; Wolf, C.; Zárrate‐Charry, D. When are hypotheses useful in ecology and evolution?, Ecology and Evolution, Volume 11 (2021) no. 11, pp. 5762-5776 | DOI

[11] Bewley, R.; Crutchley, S.; Shell, C. New light on an ancient landscape: lidar survey in the Stonehenge World Heritage Site, Antiquity, Volume 79 (2015) no. 305, pp. 636-647 | DOI

[12] Boettiger, C.; Chamberlain, S.; Hart, E.; Ram, K. Building Software, Building Community: Lessons from the rOpenSci Project, Journal of Open Research Software, Volume 3 (2015) no. 1 | DOI

[13] Boote, D. N.; Beile, P. Scholars Before Researchers: On the Centrality of the Dissertation Literature Review in Research Preparation, Educational Researcher, Volume 34 (2005) no. 6, pp. 3-15 | DOI

[14] Bruin, S. d.; Bregt, A.; Ven, M. v. d. Assessing fitness for use: the expected value of spatial data sets, International Journal of Geographical Information Science, Volume 15 (2010) no. 5, pp. 457-471 | DOI

[15] Claverie, M.; Ju, J.; Masek, J. G.; Dungan, J. L.; Vermote, E. F.; Roger, J.-C.; Skakun, S. V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set, Remote Sensing of Environment, Volume 219 (2018), pp. 145-161 | DOI

[16] Davis, D. S.; Buffa, D.; Rasolondrainy, T.; Creswell, E.; Anyanwu, C.; Ibirogba, A.; Randolph, C.; Ouarghidi, A.; Phelps, L. N.; Lahiniriko, F.; Chrisostome, Z. M.; Manahira, G.; Douglass, K. The aerial panopticon and the ethics of archaeological remote sensing in sacred cultural spaces, Archaeological Prospection, Volume 28 (2021) no. 3, pp. 305-320 | DOI

[17] de Knegt, H. J.; van Langevelde, F.; Coughenour, M. B.; Skidmore, A. K.; de Boer, W. F.; Heitkönig, I. M. A.; Knox, N. M.; Slotow, R.; van der Waal, C.; Prins, H. H. T. Spatial autocorrelation and the scaling of species–environment relationships, Ecology, Volume 91 (2010) no. 8, pp. 2455-2465 | DOI

[18] Devillers, R.; Bédard, Y.; Jeansoulin, R.; Moulin, B. Towards spatial data quality information analysis tools for experts assessing the fitness for use of spatial data, International Journal of Geographical Information Science, Volume 21 (2007) no. 3, pp. 261-282 | DOI

[19] Dubayah, R.; Blair, J. B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; Armston, J.; Tang, H.; Duncanson, L.; Hancock, S.; Jantz, P.; Marselis, S.; Patterson, P. L.; Qi, W.; Silva, C. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography, Science of Remote Sensing, Volume 1 (2020) | DOI

[20] Farr, T. G.; Kobrick, M. Shuttle radar topography mission produces a wealth of data, Eos, Transactions American Geophysical Union, Volume 81 (2000) no. 48 | DOI

[21] Fisher, M.; Fradley, M.; Flohr, P.; Rouhani, B.; Simi, F. Ethical considerations for remote sensing and open data in relation to the endangered archaeology in the Middle East and North Africa project, Archaeological Prospection, Volume 28 (2021) no. 3, pp. 279-292 | DOI

[22] Fretwell, P. T.; Scofield, P.; Phillips, R. A. Using super-high resolution satellite imagery to census threatened albatrosses, Ibis, Volume 159 (2017) no. 3, pp. 481-490 | DOI

[23] Gezelter, J. D. What, Exactly, Is Open Science?, Open Source Initiative, 2009 (

[24] Gray, C. T.; Marwick, B. Truth, Proof, and Reproducibility: There’s No Counter-Attack for the Codeless, Statistics and Data Science (Communications in Computer and Information Science), Volume 1150, Springer Singapore, Singapore, 2020, pp. 111-129 | DOI

[25] Group RDA FAIR Data Maturity Model Working et al. FAIR Data Maturity Model: Specification and Guidelines, Research Data Alliance, Volume 10 (2020) | DOI

[26] Guptill, S. C.; Morrison, J. L. Elements of Spatial Data Quality, Elsevier, 2013

[27] Hallett, T. B.; Coulson, T.; Pilkington, J. G.; Clutton-Brock, T. H.; Pemberton, J. M.; Grenfell, B. T. Why large-scale climate indices seem to predict ecological processes better than local weather, Nature, Volume 430 (2004) no. 6995, pp. 71-75 | DOI

[28] Hampton, S. E.; Anderson, S. S.; Bagby, S. C.; Gries, C.; Han, X.; Hart, E. M.; Jones, M. B.; Lenhardt, W. C.; MacDonald, A.; Michener, W. K.; Mudge, J.; Pourmokhtarian, A.; Schildhauer, M. P.; Woo, K. H.; Zimmerman, N. The Tao of open science for ecology, Ecosphere, Volume 6 (2015) no. 7 | DOI

[29] Hampton, S. E.; Jones, M. B.; Wasser, L. A.; Schildhauer, M. P.; Supp, S. R.; Brun, J.; Hernandez, R. R.; Boettiger, C.; Collins, S. L.; Gross, L. J.; Fernández, D. S.; Budden, A.; White, E. P.; Teal, T. K.; Labou, S. G.; Aukema, J. E. Skills and Knowledge for Data-Intensive Environmental Research, BioScience, Volume 67 (2017) no. 6, pp. 546-557 | DOI

[30] Harris, R. Reflections on the value of ethics in relation to Earth observation, International Journal of Remote Sensing, Volume 34 (2012) no. 4, pp. 1207-1219 | DOI

[31] Houborg, R.; McCabe, M. F. A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data, Remote Sensing of Environment, Volume 209 (2018), pp. 211-226 | DOI

[32] Howe III, E. G.; Elenberg, F. Ethical Challenges Posed by Big Data, Innovations in Clinical Neuroscience, Volume 17 (2020), pp. 24-30 (

[33] Hoy, A. Q. Location-based data raise ethical issues for cultural heritage, Science, Volume 364 (2019) no. 6447, pp. 1244-1245 | DOI

[34] Hoyer, S.; Hamman, J. xarray: N-D labeled Arrays and Datasets in Python, Journal of Open Research Software, Volume 5 (2017) no. 1 | DOI

[35] Huang, S.-c.; Jin, L.; Zhang, Y. Step by step: Sub-goals as a source of motivation, Organizational Behavior and Human Decision Processes, Volume 141 (2017), pp. 1-15 | DOI

[36] Hunter, L. E.; Howle, J. F.; Rose, R. S.; Bawden, G. W. LiDAR-Assisted Identification of an Active Fault near Truckee, California, Bulletin of the Seismological Society of America, Volume 101 (2011) no. 3, pp. 1162-1181 | DOI

[37] Johnson, K. M.; Ives, T. H.; Ouimet, W. B.; Sportman, S. P. High‐resolution airborne Light Detection and Ranging data, ethics and archaeology: Considerations from the northeastern United States, Archaeological Prospection, Volume 28 (2021) no. 3, pp. 293-303 | DOI

[38] Joseph, M. B. Earthlab/Neonhs: V0.0.1., Earth Lab, University of Colorado Boulder, 2021 | DOI

[39] Kampe, T. U. NEON: the first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure, Journal of Applied Remote Sensing, Volume 4 (2010) no. 1 | DOI

[40] Kitchin, R. The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences, Sage, 2014

[41] Koontz, M. J.; Latimer, A. M.; Mortenson, L. A.; Fettig, C. J.; North, M. P. Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality, Nature Communications, Volume 12 (2021) no. 1 | DOI

[42] Kruse, F. A.; Baugh, W. M.; Perry, S. L. Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping, Journal of Applied Remote Sensing, Volume 9 (2015) no. 1 | DOI

[43] Kulp, S. A.; Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding, Nature Communications, Volume 10 (2019) no. 1 | DOI

[44] Lefsky, M. A.; Cohen, W. B.; Parker, G. G.; Harding, D. J. Lidar Remote Sensing for Ecosystem Studies, BioScience, Volume 52 (2002) no. 1 | DOI

[45] Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data, Eos, Transactions American Geophysical Union, Volume 89 (2008) no. 10 | DOI

[46] Levick, S. R.; Asner, G. P.; Chadwick, O. A.; Khomo, L. M.; Rogers, K. H.; Hartshorn, A. S.; Kennedy-Bowdoin, T.; Knapp, D. E. Regional insight into savanna hydrogeomorphology from termite mounds, Nature Communications, Volume 1 (2010) no. 1 | DOI

[47] Li, X. q.; Chen, Z. a.; Zhang, L. t.; Jia, D. Construction and Accuracy Test of a 3D Model of Non-Metric Camera Images Using Agisoft PhotoScan, Procedia Environmental Sciences, Volume 36 (2016), pp. 184-190 | DOI

[48] Livingston, S.; Robinson, W. L. Mapping fears: the use of commercial high-resolution satellite imagery in international affairs, Astropolitics, Volume 1 (2010) no. 2, pp. 3-25 | DOI

[49] Lowndes, J. S. S.; Best, B. D.; Scarborough, C.; Afflerbach, J. C.; Frazier, M. R.; O’Hara, C. C.; Jiang, N.; Halpern, B. S. Our path to better science in less time using open data science tools, Nature Ecology & Evolution, Volume 1 (2017) no. 6 | DOI

[50] Maclean, I. M. D.; Hopkins, J. J.; Bennie, J.; Lawson, C. R.; Wilson, R. J. Microclimates buffer the responses of plant communities to climate change, Global Ecology and Biogeography, Volume 24 (2015) no. 11, pp. 1340-1350 | DOI

[51] Masek, J. G.; Wulder, M. A.; Markham, B.; McCorkel, J.; Crawford, C. J.; Storey, J.; Jenstrom, D. T. Landsat 9: Empowering open science and applications through continuity, Remote Sensing of Environment, Volume 248 (2020) | DOI

[52] McGlinchy, J.; Johnson, B.; Muller, B.; Joseph, M.; Diaz, J. Application of UNet Fully Convolutional Neural Network to Impervious Surface Segmentation in Urban Environment from High Resolution Satellite Imagery, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2019, pp. 3915-3918 | DOI

[53] McGranahan, G.; Balk, D.; Anderson, B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones, Environment and Urbanization, Volume 19 (2007) no. 1, pp. 17-37 | DOI

[54] Mélin, F.; Vantrepotte, V.; Chuprin, A.; Grant, M.; Jackson, T.; Sathyendranath, S. Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll- a data, Remote Sensing of Environment, Volume 203 (2017), pp. 139-151 | DOI

[55] Metcalfe, D. B.; Hermans, T. D. G.; Ahlstrand, J.; Becker, M.; Berggren, M.; Björk, R. G.; Björkman, M. P.; Blok, D.; Chaudhary, N.; Chisholm, C.; Classen, A. T.; Hasselquist, N. J.; Jonsson, M.; Kristensen, J. A.; Kumordzi, B. B.; Lee, H.; Mayor, J. R.; Prevéy, J.; Pantazatou, K.; Rousk, J.; Sponseller, R. A.; Sundqvist, M. K.; Tang, J.; Uddling, J.; Wallin, G.; Zhang, W.; Ahlström, A.; Tenenbaum, D. E.; Abdi, A. M. Patchy field sampling biases understanding of climate change impacts across the Arctic, Nature Ecology & Evolution, Volume 2 (2018) no. 9, pp. 1443-1448 | DOI

[56] Mlambo, R.; Woodhouse, I.; Gerard, F.; Anderson, K. Structure from Motion (SfM) Photogrammetry with Drone Data: A Low Cost Method for Monitoring Greenhouse Gas Emissions from Forests in Developing Countries, Forests, Volume 8 (2017) no. 3 | DOI

[57] Munafò, M. R.; Nosek, B. A.; Bishop, D. V. M.; Button, K. S.; Chambers, C. D.; Percie du Sert, N.; Simonsohn, U.; Wagenmakers, E.-J.; Ware, J. J.; Ioannidis, J. P. A. A manifesto for reproducible science, Nature Human Behaviour, Volume 1 (2017) no. 1 | DOI

[58] Musiega, D. E.; Sanga-Ngoie, K.; Fukuyama, K. A framework for predicting and visualizing the East African wildebeest migration-route patterns in variable climatic conditions using geographic information system and remote sensing, Ecological Research, Volume 21 (2006) no. 4, pp. 530-543 | DOI

[59] NASA, J. NASA Shuttle Radar Topography Mission Water Body Data Shapefiles & Raster Files, NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2013

[60] Nosek, B. A.; Alter, G.; Banks, G. C.; Borsboom, D.; Bowman, S. D.; Breckler, S. J.; Buck, S.; Chambers, C. D.; Chin, G.; Christensen, G.; Contestabile, M.; Dafoe, A.; Eich, E.; Freese, J.; Glennerster, R.; Goroff, D.; Green, D. P.; Hesse, B.; Humphreys, M.; Ishiyama, J.; Karlan, D.; Kraut, A.; Lupia, A.; Mabry, P.; Madon, T.; Malhotra, N.; Mayo-Wilson, E.; McNutt, M.; Miguel, E.; Paluck, E. L.; Simonsohn, U.; Soderberg, C.; Spellman, B. A.; Turitto, J.; VandenBos, G.; Vazire, S.; Wagenmakers, E. J.; Wilson, R.; Yarkoni, T. Promoting an open research culture, Science, Volume 348 (2015) no. 6242, pp. 1422-1425 | DOI

[61] Olah, C.; Carter, S. Research Debt, Distill, Volume 2 (2017) no. 3 | DOI

[62] Open Source Initiative The Open Source Definition, Open Source Initiative, 2007 (

[63] Ploton, P.; Mortier, F.; Réjou-Méchain, M.; Barbier, N.; Picard, N.; Rossi, V.; Dormann, C.; Cornu, G.; Viennois, G.; Bayol, N.; Lyapustin, A.; Gourlet-Fleury, S.; Pélissier, R. Spatial validation reveals poor predictive performance of large-scale ecological mapping models, Nature Communications, Volume 11 (2020) no. 1 | DOI

[64] Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 779-788

[65] Rocklin, M. Dask: Parallel Computation with Blocked Algorithms and Task Scheduling, Proceedings of the 14th Python in Science Conference, Volume 126 (2015)

[66] Rodman, K. C.; Veblen, T. T.; Chapman, T. B.; Rother, M. T.; Wion, A. P.; Redmond, M. D. Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA, Ecological Applications, Volume 30 (2019) no. 1 | DOI

[67] Roy, D.; Wulder, M.; Loveland, T.; C.E., W.; Allen, R.; Anderson, M.; Helder, D.; Irons, J.; Johnson, D.; Kennedy, R.; Scambos, T.; Schaaf, C.; Schott, J.; Sheng, Y.; Vermote, E.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Hipple, J.; Hostert, P.; Huntington, J.; Justice, C.; Kilic, A.; Kovalskyy, V.; Lee, Z.; Lymburner, L.; Masek, J.; McCorkel, J.; Shuai, Y.; Trezza, R.; Vogelmann, J.; Wynne, R.; Zhu, Z. Landsat-8: Science and product vision for terrestrial global change research, Remote Sensing of Environment, Volume 145 (2014), pp. 154-172 | DOI

[68] Sandel, B. Towards a taxonomy of spatial scale-dependence, Ecography, Volume 38 (2014) no. 4, pp. 358-369 | DOI

[69] Schmidt, C. C.; Prins, E. M. GOES Wildfire ABBA Applications in the Western Hemisphere, 2nd International Wildland Fire Ecology and Fire Man- agement Congress and 5th Symp. On Fire and Forest Meteorology (2003)

[70] Schmitt, M.; Zhu, X. X. Data Fusion and Remote Sensing: An ever-growing relationship, IEEE Geoscience and Remote Sensing Magazine, Volume 4 (2016) no. 4, pp. 6-23 | DOI

[71] Shaman, J.; Solomon, S.; Colwell, R. R.; Field, C. B. Fostering advances in interdisciplinary climate science, Proceedings of the National Academy of Sciences, Volume 110 (2013) no. supplement_1, pp. 3653-3656 | DOI

[72] Simard, M.; Zhang, K.; Rivera-Monroy, V. H.; Ross, M. S.; Ruiz, P. L.; Castañeda-Moya, E.; Twilley, R. R.; Rodriguez, E. Mapping Height and Biomass of Mangrove Forests in Everglades National Park with SRTM Elevation Data, Photogrammetric Engineering & Remote Sensing, Volume 72 (2006) no. 3, pp. 299-311 | DOI

[73] Slonecker, E. T.; Shaw, D. M.; Lillesand, T. M. Emerging Legal and Ethical Issues in Advanced Remote Sensing Technology, Photogrammetric Engineering and Remote Sensing, Volume 64 (1998), pp. 589-595

[74] Solvik, K.; Bartuszevige, A. M.; Bogaerts, M.; Joseph, M. B. Predicting Playa Inundation Using a Long Short‐Term Memory Neural Network, Water Resources Research, Volume 57 (2021) no. 12 | DOI

[75] Surazakov, A.; Aizen, V. Estimating volume change of mountain glaciers using SRTM and map-based topographic data, IEEE Transactions on Geoscience and Remote Sensing, Volume 44 (2006) no. 10, pp. 2991-2995 | DOI

[76] Tayi, G. K.; Ballou, D. P. Examining Data Quality, Communications of the ACM, Volume 41 (1998), pp. 54-57

[77] Thatcher, C. A.; Lukas, V.; Stoker, J. M. The 3D Elevation Program and energy for the Nation, Fact Sheet, 2020 | DOI

[78] Trizna, M.; Wasser, L. A.; Nicholson, D. yOpenSci: Open and Reproducible Research, Powered by Python, Biodiversity Information Science and Standards, Volume 1 (2021)

[79] VanValkenburgh, P.; Dufton, J. A. Big Archaeology: Horizons and Blindspots, Journal of Field Archaeology, Volume 45 (2020) no. sup1 | DOI

[80] Vong, A.; Matos-Carvalho, J. P.; Toffanin, P.; Pedro, D.; Azevedo, F.; Moutinho, F.; Garcia, N. C.; Mora, A. How to Build a 2D and 3D Aerial Multispectral Map?—All Steps Deeply Explained, Remote Sensing, Volume 13 (2021) no. 16 | DOI

[81] Wallace, L.; Lucieer, A.; Malenovský, Z.; Turner, D.; Vopěnka, P. Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds, Forests, Volume 7 (2016) no. 12 | DOI

[82] Wang, C.; Pavelsky, T. M.; Yao, F.; Yang, X.; Zhang, S.; Chapman, B.; Song, C.; Sebastian, A.; Frizzelle, B.; Frankenberg, E.; Clinton, N. Flood Extent Mapping During Hurricane Florence With Repeat‐Pass L‐Band UAVSAR Images, Water Resources Research, Volume 58 (2022) no. 3 | DOI

[83] Wang, N. “A Success Story that Can Be Sold”?: A Case Study of Humanitarian Use of Drones, 2019 IEEE International Symposium on Technology and Society (ISTAS), IEEE, 2019, pp. 1-6 | DOI

[84] Weinstein, B. G.; Marconi, S.; Bohlman, S. A.; Zare, A.; White, E. P. Cross-site learning in deep learning RGB tree crown detection, Ecological Informatics, Volume 56 (2020) | DOI

[85] Weintraub, P. G. The Importance of Publishing Negative Results, Journal of Insect Science, Volume 16 (2016) no. 1 | DOI

[86] Westoby, M.; Brasington, J.; Glasser, N.; Hambrey, M.; Reynolds, J. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, Volume 179 (2012), pp. 300-314 | DOI

[87] Wilkinson, M. D.; Dumontier, M.; Aalbersberg, I. J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L. B.; Bourne, P. E.; Bouwman, J.; Brookes, A. J.; Clark, T.; Crosas, M.; Dillo, I.; Dumon, O.; Edmunds, S.; Evelo, C. T.; Finkers, R.; Gonzalez-Beltran, A.; Gray, A. J.; Groth, P.; Goble, C.; Grethe, J. S.; Heringa, J.; ’t Hoen, P. A.; Hooft, R.; Kuhn, T.; Kok, R.; Kok, J.; Lusher, S. J.; Martone, M. E.; Mons, A.; Packer, A. L.; Persson, B.; Rocca-Serra, P.; Roos, M.; van Schaik, R.; Sansone, S.-A.; Schultes, E.; Sengstag, T.; Slater, T.; Strawn, G.; Swertz, M. A.; Thompson, M.; van der Lei, J.; van Mulligen, E.; Velterop, J.; Waagmeester, A.; Wittenburg, P.; Wolstencroft, K.; Zhao, J.; Mons, B. The FAIR Guiding Principles for scientific data management and stewardship, Scientific Data, Volume 3 (2016) no. 1 | DOI

[88] Wilson, G. Software Carpentry: lessons learned, F1000Research, Volume 3 (2016) | DOI

[89] Woods, A. W.; Holasek, R. E.; Self, S. Wind-driven dispersal of volcanic ash plumes and its control on the thermal structure of the plume-top, Bulletin of Volcanology, Volume 57 (1995) no. 5, pp. 283-292 | DOI

[90] Wyder, P. M.; Chen, Y.-S.; Lasrado, A. J.; Pelles, R. J.; Kwiatkowski, R.; Comas, E. O. A.; Kennedy, R.; Mangla, A.; Huang, Z.; Hu, X.; Xiong, Z.; Aharoni, T.; Chuang, T.-C.; Lipson, H. Autonomous drone hunter operating by deep learning and all-onboard computations in GPS-denied environments, PLOS ONE, Volume 14 (2019) no. 11 | DOI

[91] Young, N. E.; Anderson, R. S.; Chignell, S. M.; Vorster, A. G.; Lawrence, R.; Evangelista, P. H. A survival guide to Landsat preprocessing, Ecology, Volume 98 (2017) no. 4, pp. 920-932 | DOI

[92] Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation, Remote Sensing, Volume 8 (2016) no. 6 | DOI

[93] Zipkin, E. F.; Zylstra, E. R.; Wright, A. D.; Saunders, S. P.; Finley, A. O.; Dietze, M. C.; Itter, M. S.; Tingley, M. W. Addressing data integration challenges to link ecological processes across scales, Frontiers in Ecology and the Environment, Volume 19 (2021) no. 1, pp. 30-38 | DOI

[94] Zipkin, E. F.; Zylstra, E. R.; Wright, A. D.; Saunders, S. P.; Finley, A. O.; Dietze, M. C.; Itter, M. S.; Tingley, M. W. Addressing data integration challenges to link ecological processes across scales, Frontiers in Ecology and the Environment, Volume 19 (2021) no. 1, pp. 30-38 | DOI

Cited by Sources: