Section: Evolutionary Biology
Topic: Evolution, Genetics/Genomics, Population biology

How does the mode of evolutionary divergence affect reproductive isolation?

10.24072/pcjournal.226 - Peer Community Journal, Volume 3 (2023), article no. e6.

Get full text PDF Peer reviewed and recommended by PCI
article image

When divergent populations interbreed, the outcome will be affected by the genomic and phenotypic differences that they have accumulated. In this way, the mode of evolutionary divergence between populations may have predictable consequences for the fitness of their hybrids, and so for the progress of speciation. To investigate these connections, we present a new analysis of hybridization under Fisher's geometric model, making few assumptions about the allelic effects that differentiate the hybridizing populations. Results show that the strength and form of postzygotic reproductive isolation (RI) depend on just two properties of the evolutionary changes, which we call the "total amount" and "net effect" of change, and whose difference quantifies the similarity of the changes at different loci, or their tendency to act in the same phenotypic direction. It follows from our results that identical patterns of RI can arise in different ways, since different evolutionary histories can lead to the same total amount and net effect of change. Nevertheless, we show how these estimable quantities do contain some information about the history of divergence, and that — thanks to Haldane's Sieve — the dominance and additive effects contain complementary information.

Published online:
DOI: 10.24072/pcjournal.226
Type: Research article

De Sanctis, Bianca 1, 2; Schneemann, Hilde 1; Welch, John J. 1

1 Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
2 Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {De Sanctis, Bianca and Schneemann, Hilde and Welch, John J.},
     title = {How does the mode of evolutionary divergence affect reproductive isolation?},
     journal = {Peer Community Journal},
     eid = {e6},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.226},
     url = {}
AU  - De Sanctis, Bianca
AU  - Schneemann, Hilde
AU  - Welch, John J.
TI  - How does the mode of evolutionary divergence affect reproductive isolation?
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.226
ID  - 10_24072_pcjournal_226
ER  - 
%0 Journal Article
%A De Sanctis, Bianca
%A Schneemann, Hilde
%A Welch, John J.
%T How does the mode of evolutionary divergence affect reproductive isolation?
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%R 10.24072/pcjournal.226
%F 10_24072_pcjournal_226
De Sanctis, Bianca; Schneemann, Hilde; Welch, John J. How does the mode of evolutionary divergence affect reproductive isolation?. Peer Community Journal, Volume 3 (2023), article  no. e6. doi : 10.24072/pcjournal.226.

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.evolbiol.100543

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Abbott, R.; Albach, D.; Ansell, S.; Arntzen, J. W.; Baird, S. J. E.; Bierne, N.; Boughman, J.; Brelsford, A.; Buerkle, C. A.; Buggs, R.; Butlin, R. K.; Dieckmann, U.; Eroukhmanoff, F.; Grill, A.; Cahan, S. H.; Hermansen, J. S.; Hewitt, G.; Hudson, A. G.; Jiggins, C.; Jones, J.; Keller, B.; Marczewski, T.; Mallet, J.; Martinez-Rodriguez, P.; Möst, M.; Mullen, S.; Nichols, R.; Nolte, A. W.; Parisod, C.; Pfennig, K.; Rice, A. M.; Ritchie, M. G.; Seifert, B.; Smadja, C. M.; Stelkens, R.; Szymura, J. M.; Väinölä, R.; Wolf, J. B. W.; Zinner, D. Hybridization and speciation, Journal of Evolutionary Biology, Volume 26 (2013) no. 2, pp. 229-246 | DOI

[2] Arnold, M. L.; Hodges, S. A. Are natural hybrids fit or unfit relative to their parents?, Trends in Ecology & Evolution, Volume 10 (1995) no. 2, pp. 67-71 | DOI

[3] Barton, N. H. On the Spread of New Gene Combinations in the Third Phase of Wright's Shifting-Balance, Evolution, Volume 46 (1992) no. 2 | DOI

[4] Barton, N. H. The role of hybridization in evolution, Molecular Ecology, Volume 10 (2001) no. 3, pp. 551-568 | DOI

[5] Barton, N. H. How does epistasis influence the response to selection?, Heredity, Volume 118 (2017) no. 1, pp. 96-109 | DOI

[6] Bernardes, J. P.; Stelkens, R. B.; Greig, D. Heterosis in hybrids within and between yeast species, Journal of Evolutionary Biology, Volume 30 (2017) no. 3, pp. 538-548 | DOI

[7] Bierne, N.; Gagnaire, P.-A.; David, P. The geography of introgression in a patchy environment and the thorn in the side of ecological speciation, Current Zoology, Volume 59 (2013) no. 1, pp. 72-86 | DOI

[8] Billiard, S.; Castric, V.; Llaurens, V. The integrative biology of genetic dominance, Biological Reviews, Volume 96 (2021) no. 6, pp. 2925-2942 | DOI

[9] Chan, W. Y.; Hoffmann, A. A.; Oppen, M. J. H. Hybridization as a conservation management tool, Conservation Letters, Volume 12 (2019) no. 5 | DOI

[10] Chevin, L.-M.; Decorzent, G.; Lenormand, T. Niche dimensionality and the genetics of ecological speciation, Evolution, Volume 68 (2014) no. 5, pp. 1244-1256 | DOI

[11] Clo, J.; Ronfort, J.; Gay, L. Fitness consequences of hybridization in a predominantly selfing species: insights into the role of dominance and epistatic incompatibilities, Heredity, Volume 127 (2021) no. 4, pp. 393-400 | DOI

[12] Cockerham, C. C. An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present, Genetics, Volume 39 (1954) no. 6, pp. 859-882 | DOI

[13] Coughlan, J. M.; Matute, D. R. The importance of intrinsic postzygotic barriers throughout the speciation process, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 375 (2020) no. 1806 | DOI

[14] Coyne, J. A.; Orr, H. A. Speciation, Oxford University Press, 2004

[15] Crnokrak, P.; Roff, D. A. Dominance variance: associations with selection and fitness, Heredity, Volume 75 (1995) no. 5, pp. 530-540 | DOI

[16] Dekens, L.; Otto, S.; Calvez, V. The best of both worlds: Combining population genetic and quantitative genetic models, Theoretical Population Biology, Volume 148 (2022), pp. 49-75 | DOI

[17] Edmands, S. Heterosis and Outbreeding Depression in Interpopulation Crosses Spanning a Wide Range of Divergence, Evolution, Volume 53 (1999) no. 6 | DOI

[18] Edmands, S. Does parental divergence predict reproductive compatibility?, Trends in Ecology & Evolution, Volume 17 (2002) no. 11, pp. 520-527 | DOI

[19] Fisher, R. A. The genetical theory of natural selection, Clarendon Press, Oxford, 1930 | DOI

[20] Frankham, R. Are responses to artificial selection for reproductive fitness characters consistently asymmetrical?, Genetical Research, Volume 56 (1990) no. 1, pp. 35-42 | DOI

[21] Fraser, H. B. Detecting selection with a genetic cross, Proceedings of the National Academy of Sciences, Volume 117 (2020) no. 36, pp. 22323-22330 | DOI

[22] Fraïsse, C.; Elderfield, J. A. D.; Welch, J. J. The genetics of speciation: are complex incompatibilities easier to evolve?, Journal of Evolutionary Biology, Volume 27 (2014) no. 4, pp. 688-699 | DOI

[23] Fraïsse, C.; Gunnarsson, P. A.; Roze, D.; Bierne, N.; Welch, J. J. The genetics of speciation: Insights from Fisher's geometric model, Evolution, Volume 70 (2016) no. 7, pp. 1450-1464 | DOI

[24] Fraïsse, C.; Welch, J. J. The distribution of epistasis on simple fitness landscapes, Biology Letters, Volume 15 (2019) no. 4 | DOI

[25] Genovart, M. Natural hybridization and conservation, Biodiversity and Conservation, Volume 18 (2008) no. 6, pp. 1435-1439 | DOI

[26] Haldane, J. B. S. A mathematical theory of natural and artificial selection, Part I, Transactions of the Cambridge Philosophical Society, Volume 23 (1924) | DOI

[27] Haldane, J. B. S. A mathematical theory of natural and artificial selection, Part V: selection and mutation., Mathematical Proceedings of the Cambridge Philosophical Society, Volume 28 (1927), pp. 838-844 | DOI

[28] Hartl, D. Compensatory Nearly Neutral Mutations: Selection without Adaptation, Journal of Theoretical Biology, Volume 182 (1996) no. 3, pp. 303-309 | DOI

[29] Hill, W. G. Dominance and epistasis as components of heterosis, Zeitschrift für Tierzüchtung und Züchtungsbiologie, Volume 99 (1982) no. 1-4, pp. 161-168 | DOI

[30] Jezkova, T.; Leal, M.; Rodríguez-Robles, J. A. Genetic drift or natural selection? Hybridization and asymmetric mitochondrial introgression in two Caribbean lizards (<i>Anolis pulchellus</i>and<i>Anolis krugi</i>), Journal of Evolutionary Biology, Volume 26 (2013) no. 7, pp. 1458-1471 | DOI

[31] Lande, R. Natural Selection and Random Genetic Drift in Phenotypic Evolution, Evolution, Volume 30 (1976) no. 2 | DOI

[32] Lande, R. The minimum number of genes contributing to quantitative variation between and within populations, Genetics, Volume 99 (1981) no. 3-4, pp. 541-553 | DOI

[33] Lourenço, J.; Galtier, N.; Glémin, S. Complexity, pleiotropy, and the fitness effect of mutations, Evolution, Volume 65 (2011) no. 6, pp. 1559-1571 | DOI

[34] Lynch, M. The Genetic Interpretation of Inbreeding Depression and Outbreeding Depression, Evolution, Volume 45 (1991) no. 3 | DOI

[35] Lynch, M.; Walsh, B. Genetics and analysis of quantitative traits, Sinauer, Sunderland, Mass., 1998

[36] Mani, G.; Clarke, B. Mutational order: a major stochastic process in evolution, Proceedings of the Royal Society of London. B. Biological Sciences, Volume 240 (1990) no. 1297, pp. 29-37 | DOI

[37] Manna, F.; Martin, G.; Lenormand, T. Fitness Landscapes: An Alternative Theory for the Dominance of Mutation, Genetics, Volume 189 (2011) no. 3, pp. 923-937 | DOI

[38] Martin, G. Fisher’s Geometrical Model Emerges as a Property of Complex Integrated Phenotypic Networks, Genetics, Volume 197 (2014) no. 1, pp. 237-255 | DOI

[39] Martin, G.; Elena, S. F.; Lenormand, T. Distributions of epistasis in microbes fit predictions from a fitness landscape model, Nature Genetics, Volume 39 (2007) no. 4, pp. 555-560 | DOI

[40] Martin, G.; Lenormand, T. The fitness effect of mutations across environments: a survey in light of fitness landscape models, Evolution, Volume 60 (2006) no. 12 | DOI

[41] Matuszewski, S.; Hermisson, J.; Kopp, M. Fisher's geometric model with a moving optimum, Evolution, Volume 68 (2014) no. 9, pp. 2571-2588 | DOI

[42] Moran, B. M.; Payne, C.; Langdon, Q.; Powell, D. L.; Brandvain, Y.; Schumer, M. The genomic consequences of hybridization, eLife, Volume 10 (2021) | DOI

[43] Orr, H. A. The population genetics of adaptation: The distribution of factors fixed during adaptive evolution, Evolution, Volume 52 (1998) no. 4 | DOI

[44] Orr, H. A.; Betancourt, A. J. Haldane's Sieve and Adaptation From the Standing Genetic Variation, Genetics, Volume 157 (2001) no. 2, pp. 875-884 | DOI

[45] Poon, A.; Otto, S. P. Compensating for our load of mutations: freezing the meltdown of small populations, Evolution, Volume 54 (2000) no. 5 | DOI

[46] Roze, D.; Blanckaert, A. Epistasis, pleiotropy, and the mutation load in sexual and asexual populations, Evolution, Volume 68 (2014) no. 1, pp. 137-149 | DOI

[47] Rundle, H. D.; Whitlock, M. C. A genetic interpretation of ecologically dependent isolation, Evolution, Volume 55 (2001) no. 1, pp. 198-201 | DOI

[48] Satokangas, I.; Martin, S. H.; Helanterä, H.; Saramäki, J.; Kulmuni, J. Multi-locus interactions and the build-up of reproductive isolation, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 375 (2020) no. 1806 | DOI

[49] Schiffman, J. S.; Ralph, P. L. System drift and speciation, Evolution, Volume 76 (2021) no. 2, pp. 236-251 | DOI

[50] Schluter, D. The ecology of adaptive radiation, Oxford University Press, 2000

[51] Schluter, D.; Conte, G. L. Genetics and ecological speciation, Proceedings of the National Academy of Sciences, Volume 106 (2009) no. supplement_1, pp. 9955-9962 | DOI

[52] Schneemann, H.; De Sanctis, B.; Roze, D.; Bierne, N.; Welch, J. J. The geometry and genetics of hybridization, Evolution, Volume 74 (2020) no. 12, pp. 2575-2590 | DOI

[53] Schneemann, H.; Munzur, A. D.; Thompson, K. A.; Welch, J. J. The diverse effects of phenotypic dominance on hybrid fitness, Evolution, Volume 76 (2022) | DOI

[54] Simon, A.; Bierne, N.; Welch, J. J. Coadapted genomes and selection on hybrids: Fisher's geometric model explains a variety of empirical patterns, Evolution Letters, Volume 2 (2018) no. 5, pp. 472-498 | DOI

[55] Stamp, M. A.; Hadfield, J. D. The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta‐analysis, Ecology Letters, Volume 23 (2020) no. 10, pp. 1432-1441 | DOI

[56] Tenaillon, O.; Silander, O. K.; Uzan, J.-P.; Chao, L. Quantifying Organismal Complexity using a Population Genetic Approach, PLoS ONE, Volume 2 (2007) no. 2 | DOI

[57] Thompson, K. A.; Urquhart-Cronish, M.; Whitney, K. D.; Rieseberg, L. H.; Schluter, D. Patterns, Predictors, and Consequences of Dominance in Hybrids, The American Naturalist, Volume 197 (2021) no. 3 | DOI

[58] Welch, J. J. Accumulating Dobzhansky-Muller incompatibilities: reconciling theory and data, Evolution, Volume 58 (2004) no. 6 | DOI

[59] Welch, J. J.; Waxman, D. Modularity and the cost of complexity, Evolution, Volume 57 (2003) no. 8 | DOI

[60] Whitlock, M. C. Evolutionary inference from QST, Molecular Ecology, Volume 17 (2008) no. 8, pp. 1885-1896 | DOI

[61] Yamaguchi, R.; Otto, S. P. Insights from Fisher's geometric model on the likelihood of speciation under different histories of environmental change, Evolution, Volume 74 (2020) no. 8, pp. 1603-1619 | DOI

[62] Yeaman, S. Evolution of polygenic traits under global <i>vs</i> local adaptation, Genetics, Volume 220 (2022) no. 1 | DOI

[63] Zhang, X.-S.; Hill, W. G. Multivariate stabilizing selection and pleiotropy in the maintenance of quantitative genetic variation, Evolution, Volume 57 (2003) no. 8 | DOI

Cited by Sources: