Section: Ecology
Topic: Ecology, Biology of interactions, Environmental sciences

Being a tree crop increases the odds of experiencing yield declines irrespective of pollinator dependence

10.24072/pcjournal.305 - Peer Community Journal, Volume 3 (2023), article no. e69.

Get full text PDF Peer reviewed and recommended by PCI

Crop yields, i.e. harvestable production per unit of cropland area, are in decline for a number of crops and regions, but the drivers of this process are poorly known. Global decreases in pollinator abundance and diversity have been proposed as a major driver of yield declines in crops that depend on animals, mostly bees, to produce fruits and seeds. Alternatively, widespread tree mortality has been directly and indirectly related to global climate change, which could also explain yield decreases in tree crops. As tree crops are expected to be more dependent on pollinators than other crop types, disentangling the relative influence of growth form and pollinator dependence is relevant to identify the ultimate factors driving yield declines. Yield decline, defined here as a negative average annual yearly change in yield from 1961 to 2020, was measured in 4270 time series, involving 136 crops and 163 countries and territories. About one‑fourth of all time series showed declines in crop yield, a characteristic associated with both high pollinator dependence and a tree growth form. Because pollinator dependence and plant growth form were partially correlated, we disentangled the effect of each of these two predictors using a series of generalized linear mixed models that evaluated direct and indirect associations. Our analyses revealed a stronger association of yield decline with growth form than with pollinator dependence, a relationship that persisted after partialling out the effect of pollinator dependence. In particular, yield declines were more common among tree than herbaceous and shrub crops in all major regions but in Africa, a continent showing a high incidence of yield declines irrespective of growth form. These results suggest that pollinator decline is not the main reason behind crop productivity loss, but that other factors such as climate change could be already affecting crop yield.

Published online:
DOI: 10.24072/pcjournal.305
Type: Research article
Keywords: agriculture; climate change; growth form; pollination crisis; pollinator decline; pollinator dependence; tree crops; tree mortality; yield decline
Aizen, Marcelo A. 1, 2; Gleiser, Gabriela 1, 3; Kitzberger, Thomas A. 1; Milla, Ruben 4

1 Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, Pasaje Gutiérrez 1415, 8400 San Carlos de Bariloche, Río Negro, Argentina
2 Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
3 Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Ctra Moncada-Náquera km4.5, 46113 Moncada, Valencia, Spain
4 Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Spain
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_305,
     author = {Aizen, Marcelo A. and Gleiser, Gabriela and Kitzberger, Thomas A. and Milla, Ruben},
     title = {Being a tree crop increases the odds of experiencing yield declines irrespective of pollinator dependence},
     journal = {Peer Community Journal},
     eid = {e69},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.305},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.305/}
}
TY  - JOUR
AU  - Aizen, Marcelo A.
AU  - Gleiser, Gabriela
AU  - Kitzberger, Thomas A.
AU  - Milla, Ruben
TI  - Being a tree crop increases the odds of experiencing yield declines irrespective of pollinator dependence
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.305/
DO  - 10.24072/pcjournal.305
LA  - en
ID  - 10_24072_pcjournal_305
ER  - 
%0 Journal Article
%A Aizen, Marcelo A.
%A Gleiser, Gabriela
%A Kitzberger, Thomas A.
%A Milla, Ruben
%T Being a tree crop increases the odds of experiencing yield declines irrespective of pollinator dependence
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.305/
%R 10.24072/pcjournal.305
%G en
%F 10_24072_pcjournal_305
Aizen, Marcelo A.; Gleiser, Gabriela; Kitzberger, Thomas A.; Milla, Ruben. Being a tree crop increases the odds of experiencing yield declines irrespective of pollinator dependence. Peer Community Journal, Volume 3 (2023), article  no. e69. doi : 10.24072/pcjournal.305. https://peercommunityjournal.org/articles/10.24072/pcjournal.305/

Peer reviewed and recommended by PCI : 10.24072/pci.ecology.100537

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Aizen, M.; Gleiser, G.; Kitberger, T.; Milla, R. Data and scripts for the analysis of the influence of crop pollinator dependence and growth form on yield decline, Zenodo (2023) | DOI

[2] Aizen, M. A.; Aguiar, S.; Biesmeijer, J. C.; Garibaldi, L. A.; Inouye, D. W.; Jung, C.; Martins, D. J.; Medel, R.; Morales, C. L.; Ngo, H.; Pauw, A.; Paxton, R. J.; Sáez, A.; Seymour, C. L. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification, Global Change Biology, Volume 25 (2019) no. 10, pp. 3516-3527 | DOI

[3] Aizen, M. A.; Arbetman, M. P.; Chacoff, N. P.; Chalcoff, V. R.; Feinsinger, P.; Garibaldi, L. A.; Harder, L. D.; Morales, C. L.; Sáez, A.; Vanbergen, A. J. Invasive bees and their impact on agriculture, Advances in Ecological Research, Volume 63 (2020), pp. 49-92 | DOI

[4] Aizen, M. A.; Garibaldi, L. A.; Harder, L. D. Myth and reality of a global crisis for agricultural pollination, Ecología Austral, Volume 32 (2022) no. 2bis, pp. 698-715 | DOI

[5] Aizen, M. A.; Garibaldi, L. A.; Cunningham, S. A.; Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency, Current Biology, Volume 18 (2008) no. 20, p. 1572-5 | DOI

[6] Aizen, M. A.; Garibaldi, L. A.; Cunningham, S. A.; Klein, A. M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production, Annals of Botany, Volume 103 (2009) no. 9, pp. 1579-1588 | DOI

[7] Alecrim, E. F.; Sargent, R. D.; Forrest, J. R. Higher-latitude spring-flowering herbs advance their phenology more than trees with warming temperatures, Journal of Ecology, Volume 111 (2023) no. 1, pp. 156-169 | DOI

[8] Allen, C. D.; Macalady, A. K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D. D.; Hogg, E. H.; Gonzalez, P.; Fensham, R.; Zhang, Z.; Castro, J.; Demidova, N.; Lim, J. H.; Allard, G.; Running, S. W.; Semerci, A.; Cobb, N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest Ecology and Management, Volume 259 (2010) no. 4, pp. 660-684 | DOI

[9] Altinay, G. Estimating growth rate in the presence of serially correlated errors, Applied Economics Letters, Volume 10 (2003), pp. 967-970 | DOI

[10] Ashman, T.-L.; Knight, T. M.; Steets, J. A.; Amarasekare, P.; Burd, M.; Campbell, D. R.; Dudash, M. R.; Johnston, M. O.; Mazer, S. J.; Mitchell, R. J.; Morgan, M. T.; Wilson, W. G. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences, Ecology, Volume 85 (2004) no. 9, pp. 2408-2421 | DOI

[11] Barigah, T.; Charrie, O.; Douris, M.; Bonhomme, M.; Herbette, S.; Améglio, T.; Fichot, R.; Brignolas, F.; Cochard, H. Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar, Annals of Botany, Volume 112 (2013), pp. 1431-1437 | DOI

[12] Bartomeus, I. The complexities of understanding why yield is declining, Peer Community in Ecology (2023), p. 100537

[13] Bates, D.; Mächler, M.; Bolker, B. M.; Walker, S. C. Fitting linear mixed-effects models using lme4, Journal of Statistical Software, Volume 67 (2015) no. 1, pp. 1-48 | DOI

[14] Beard, K. H.; Kelsey, K. C.; Leffler, A. J.; Welker, J. M. The missing angle: Ecosystem consequences of phenological mismatch, Trends in Ecology and Evolution, Volume 34 (2019) no. 10, pp. 885-888 | DOI

[15] Bennett, A. J.; Bending, G. D.; Chandler, D.; Hilton, S.; Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations, Biological Reviews, Volume 87 (2012) no. 1, pp. 52-71 | DOI

[16] BGCI State of the World's Trees, Botanic Gardens Conservation International, Richmond, UK., 2021, p. 51

[17] Blomberg, S. P.; Garland, T.; Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile, Evolution, Volume 57 (2003) no. 4, pp. 717-745 | DOI

[18] Borlaug, N. E. Contributions of conventional plant breeding to food production, Science, Volume 219 (1983) no. 4585, pp. 689-693 | DOI

[19] Brooks, M. E.; Kristensen, K.; van Benthem, K. J.; Magnusson, A.; Berg, C. W.; Nielsen, A.; Skaug, H. J.; Mächler, M.; Bolker, B. M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling, R Journal, Volume 9 (2017) no. 2, pp. 378-400 | DOI

[20] Cailleret, M.; Jansen, S.; Robert, E. M.; Desoto, L.; Aakala, T.; Antos, J. A.; Beikircher, B.; Bigler, C.; Bugmann, H.; Caccianiga, M.; Čada, V.; Camarero, J. J.; Cherubini, P.; Cochard, H.; Coyea, M. R.; Čufar, K.; Das, A. J.; Davi, H.; Delzon, S.; Dorman, M.; Gea-Izquierdo, G.; Gillner, S.; Haavik, L. J.; Hartmann, H.; Hereş, A. M.; Hultine, K. R.; Janda, P.; Kane, J. M.; Kharuk, V. I.; Kitzberger, T.; Klein, T.; Kramer, K.; Lens, F.; Levanic, T.; Linares Calderon, J. C.; Lloret, F.; Lobo-Do-Vale, R.; Lombardi, F.; López Rodríguez, R.; Mäkinen, H.; Mayr, S.; Mészáros, I.; Metsaranta, J. M.; Minunno, F.; Oberhuber, W.; Papadopoulos, A.; Peltoniemi, M.; Petritan, A. M.; Rohner, B.; Sangüesa-Barreda, G.; Sarris, D.; Smith, J. M.; Stan, A. B.; Sterck, F.; Stojanović, D. B.; Suarez, M. L.; Svoboda, M.; Tognetti, R.; Torres-Ruiz, J. M.; Trotsiuk, V.; Villalba, R.; Vodde, F.; Westwood, A. R.; Wyckoff, P. H.; Zafirov, N.; Martínez-Vilalta, J. A synthesis of radial growth patterns preceding tree mortality, Global Change Biology, Volume 23 (2017) no. 4, pp. 1675-1690 | DOI

[21] Choat, B.; Jansen, S.; Brodribb, T. J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S. J.; Feild, T. S.; Gleason, S. M.; Hacke, U. G.; Jacobsen, A. L.; Lens, F.; Maherali, H.; Martínez-Vilalta, J.; Mayr, S.; Mencuccini, M.; Mitchell, P. J.; Nardini, A.; Pittermann, J.; Pratt, R. B.; Sperry, J. S.; Westoby, M.; Wright, I. J.; Zanne, A. E. Global convergence in the vulnerability of forests to drought, Nature, Volume 491 (2012) no. 7426, pp. 752-755 | DOI

[22] Cottingham, K. L.; Lennon, J. T.; Brown, B. L. Knowing when to draw the line: Designing more informative ecological experiments, Frontiers in Ecology and the Environment, Volume 3 (2005) no. 3, pp. 145-152 | DOI

[23] Coumou, D.; Rahmstorf, S. A decade of weather extremes, Nature Climate Change, Volume 2 (2012) no. 7, pp. 491-496 | DOI

[24] Cunha, N. L.; Aizen, M. A. Pollen production per flower increases with floral display size across animal-pollinated flowering plants, American Journal of Botany, Volume 110 (2023) no. 6, p. e16180 | DOI

[25] Cunha, N. L.; Chacoff, N. P.; Sáez, A.; Schmucki, R.; Galetto, L.; Devoto, M.; Carrasco, J.; Mazzei, M. P.; Castillo, S. E.; Palacios, T. P.; Vesprini, J. L.; Agostini, K.; Saraiva, A. M.; Woodcock, B. A.; Ollerton, J.; Aizen, M. A. Soybean dependence on biotic pollination decreases with latitude, Agriculture, Ecosystems Environment, Volume 347 (2023) | DOI

[26] Deguines, N.; Jono, C.; Baude, M.; Henry, M.; Julliard, R.; Fontaine, C. Large-scale trade-off between agricultural intensification and crop pollination services, Frontiers in Ecology and the Environment, Volume 12 (2014) no. 4, pp. 212-217 | DOI

[27] Dickinson, M. B.; Jolliff, J.; Bova, A. S. Vascular cambium necrosis in forest fires: Using hyperbolic temperature regimes to estimate parameters of a tissue-response model, Australian Journal of Botany, Volume 52 (2004) no. 6, pp. 757-763 | DOI

[28] FAOSTAT Data available at http://www.fao.org/faostat/en. Last accessed December-27-2021 (2021)

[29] Fernandez, A. R.; Sáez, A.; Quintero, C.; Gleiser, G.; Aizen, M. A. Intentional and unintentional selection during plant domestication: Herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops, New Phytologist, Volume 231 (2021) no. 4, pp. 1586-1598 | DOI

[30] Fox, J.; Weisberg, S. R Companion to Applied Regression, Third edition, Sage, Thousand Oaks CA, 2019 no. September 2012

[31] Friedman, J. The evolution of annual and perennial plant life histories: Ecological correlates and genetic mechanisms, Annual Review of Ecology, Evolution, and Systematics, Volume 51 (2020), pp. 461-481 | DOI

[32] Gallai, N.; Salles, J.-M. M.; Settele, J.; Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline, Ecological Economics, Volume 68 (2009), pp. 810-821 | DOI

[33] Gardarin, A.; Colbach, N. How much of seed dormancy in weeds can be related to seed traits?, Weed Research, Volume 55 (2015) no. 1, pp. 14-25 | DOI

[34] Garibaldi, L.; Steffan-Dewenter, I.; Kremen, C.; Morales, J. M.; Bommarco, R.; Cunningham, S. A.; Carvalheiro, L. G.; Chacoff, N. P.; Dudenhöffer, J. H.; Greenleaf, S. S.; Holzschuh, A.; Isaacs, R.; Krewenka, K.; Mandelik, Y.; Mayfield, M. M.; Morandin, L. A.; Potts, S. G.; Ricketts, T. H.; Szentgyörgyi, H.; Viana, B. F.; Westphal, C.; Winfree, R.; Klein, A. M. Stability of pollination services decreases with isolation from natural areas despite honey bee visits., Ecology letters, Volume 14 (2011) no. 10, pp. 1062-1072 | DOI

[35] Garibaldi, L. A.; Aizen, M. A.; Sáez, A.; Gleiser, G.; Strelin, M. M.; Harder, L. D. The influences of progenitor filtering, domestication selection and the boundaries of nature on the domestication of grain crops, Functional Ecology, Volume 35 (2021) no. 9, pp. 1998-2011 | DOI

[36] Garibaldi, L. A.; Aizen, M. A.; Klein, A. M.; Cunningham, S. A.; Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence, Proceedings of the National Academy of Sciences, Volume 108 (2011) no. 14, pp. 5909-5914 | DOI

[37] Garibaldi, L. A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M. A.; Bommarco, R.; Cunningham, S. A.; Kremen, C.; Carvalheiro, L. G.; Harder, L. D.; Afik, O.; Bartomeus, I.; Benjamin, F.; Boreux, V.; Cariveau, D.; Chacoff, N. P.; Dudenhöffer, J. H.; Freitas, B. M.; Ghazoul, J.; Greenleaf, S.; Hipólito, J.; Holzschuh, A.; Howlett, B.; Isaacs, R.; Javorek, S. K.; Kennedy, C. M.; Krewenka, K. M.; Krishnan, S.; Mandelik, Y.; Mayfield, M. M.; Motzke, I.; Munyuli, T.; Nault, B. A.; Otieno, M.; Petersen, J.; Pisanty, G.; Potts, S. G.; Rader, R.; Ricketts, T. H.; Rundlöf, M.; Seymour, C. L.; Schüepp, C.; Szentgyörgyi, H.; Taki, H.; Tscharntke, T.; Vergara, C. H.; Viana, B. F.; Wanger, T. C.; Westphal, C.; Williams, N.; Klein, A. M. Wild pollinators enhance fruit set of crops regardless of honey bee abundance., Science, Volume 339 (2013) no. 6127, pp. 1608-1611 | DOI

[38] Gleiser, G.; Da Cunha, N. L.; Sáez, A.; Aizen, M. A. Ecological correlates of crop yield growth and interannual yield variation at a global scale, Web Ecology, Volume 21 (2021) no. 1, pp. 15-43 | DOI

[39] Grassini, P.; Eskridge, K. M.; Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop production trends., Nature Communications, Volume 4 (2013), p. 2918 | DOI

[40] Greenwood, S.; Ruiz-Benito, P.; Martínez-Vilalta, J.; Lloret, F.; Kitzberger, T.; Allen, C. D.; Fensham, R.; Laughlin, D. C.; Kattge, J.; Bönisch, G.; Kraft, N. J.; Jump, A. S. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area, Ecology Letters, Volume 20 (2017) no. 4, pp. 539-553 | DOI

[41] Harder, L. D.; Aizen, M. A. Floral adaptation and diversification under pollen limitation, Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, Volume 365 (2010) no. 1539, pp. 529-543 | DOI

[42] Henry, R. J. Innovations in plant genetics adapting agriculture to climate change, Current Opinion in Plant Biology, Volume 56 (2020), pp. 168-173 | DOI

[43] Huot, B.; Yao, J.; Montgomery, B. L.; He, S. Y. Growth-defense tradeoffs in plants: A balancing act to optimize fitness, Molecular Plant, Volume 7 (2014) no. 8, pp. 1267-1287 | DOI

[44] IPPC Secretariat Scientific Review of the Impact of Climate Change on Plant Pests, FAO on behalf of the IPPC Secretariat. Rome, Italy. Retrieved from https://policycommons.net/artifacts/2194918/scientific-review-of-the-impact-of-climate-change-on-plant-pests/2950895/ on 14 Mar 2023. CID: 20.500.12592/snqmv2., 2021 | DOI

[45] Jaime, L.; Batllori, E.; Margalef-Marrase, J.; Pérez Navarro, M. Á.; Lloret, F. Scots pine (Pinus sylvestris L.) mortality is explained by the climatic suitability of both host tree and bark beetle populations, Forest Ecology and Management, Volume 448 (2019) no. June, pp. 119-129 | DOI

[46] Jin, Y.; Qian, H. V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants, Ecography, Volume 42 (2019), pp. 1-7 | DOI

[47] Jongen, M.; Hellmann, C.; Unger, S. Species-specific adaptations explain resilience of herbaceous understorey to increased precipitation variability in a Mediterranean oak woodland, Ecology and Evolution, Volume 5 (2015) no. 19, pp. 4246-4262 | DOI

[48] Keeley, S. C.; Keeley, J. E.; Hutchinson, S. M.; Johnson, A. W. Postfire succession of the herbaceous flora in southern California chaparral., Ecology, Volume 62 (1981) no. 6, pp. 1608-1621 | DOI

[49] Klein, A.-M.; Vaissière, B. E.; Cane, J. H.; Steffan-Dewenter, I.; Cunningham, S. A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops, Proceedings of the Royal Society B: Biological Sciences, Volume 274 (2007) no. 1608, pp. 303-313 | DOI

[50] Klekowski, E. J. Genetic load and its causes in long-lived plants, Trees, Volume 2 (1988) no. 4, pp. 195-203 | DOI

[51] Klimeš, A.; Šímová, I.; Zizka, A.; Antonelli, A.; Herben, T. The ecological drivers of growth form evolution in flowering plants, Journal of Ecology, Volume 110 (2022) no. 7, pp. 1525-1536 | DOI

[52] Lamichhane, J. R. Rising risks of late-spring frosts in a changing climate, Nature Climate Change, Volume 11 (2021) no. 7, pp. 554-555 | DOI

[53] Lanuza, J. B.; Rader, R.; Stavert, J.; Kendall, L. K.; Saunders, M. E.; Bartomeus, I. Covariation among reproductive traits in flowering plants shapes their interactions with pollinators, Functional Ecology, Volume 7 (2023) no. April, pp. 2072-2084 | DOI

[54] Lenth, R. V. Least-Squares Means: The R Package lsmeans, Journal of Statistical Software, Volume 69 (2016), pp. 1-33 | DOI

[55] Li, M.; Bolker, B. wzmli/phyloglmm: First release of phylogenetic comparative analysis in lme4- verse., Zenodo (2019) | DOI

[56] Martínez-Vilalta, J.; Pockman, W. T. The vulnerability to freezing-induced xylem cavitation of Larrea tridentata (Zygophyllaceae) in the Chihuahuan desert, American Journal of Botany, Volume 89 (2002) no. 12, pp. 1916-1924 | DOI

[57] Matson, P. A.; Vitousek, P. M. Agricultural intensification: Will land spared from farming be land spared for nature?, Conservation Biology, Volume 20 (2006) no. 3, pp. 709-710 | DOI

[58] Mayr, S.; Gruber, A.; Bauer, H. Repeated freeze–thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine), Planta, Volume 217 (2003), pp. 436-441 | DOI

[59] McCown, B. H. Recalcitrance of woody and herbaceous perennial plants: Dealing with genetic predeterminism, In Vitro Cellular Developmental Biology - Plant, Volume 36 (2000), pp. 149-154

[60] Milla, R. Crop Origins and Phylo Food: A database and a phylogenetic tree to stimulate comparative analyses on the origins of food crops, Global Ecology and Biogeography, Volume 29 (2020) no. 4, pp. 606-614 | DOI

[61] Milla, R.; Bastida, J. M.; Turcotte, M. M.; Jones, G.; Violle, C.; Osborne, C. P.; Chacón-Labella, J.; Sosinski, Ê. E.; Kattge, J.; Laughlin, D. C.; Forey, E.; Minden, V.; Cornelissen, J. H.; Amiaud, B.; Kramer, K.; Boenisch, G.; He, T.; Pillar, V. D.; Byun, C. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food, Nature Ecology and Evolution, Volume 2 (2018) no. 11, pp. 1808-1817 | DOI

[62] Milla, R.; Osborne, C. P. Crop origins explain variation in global agricultural relevance, Nature Plants, Volume 7 (2021) no. 5, pp. 598-607 | DOI

[63] Moose, S. P.; Mumm, R. H. Molecular plant breeding as the foundation for 21st century crop improvement, Plant Physiology, Volume 147 (2008) no. 3, pp. 969-977 | DOI

[64] Mueller, N. D.; Gerber, J. S.; Johnston, M.; Ray, D. K.; Ramankutty, N.; Foley, J. A. Closing yield gaps through nutrient and water management, Nature, Volume 490 (2012), pp. 254-257 | DOI

[65] Novaes, E.; Kirst, M.; Chiang, V.; Winter-Sederoff, H.; Sederoff, R. Lignin and biomass: A negative correlation for wood formation and lignin content in trees, Plant Physiology, Volume 154 (2010) no. 2, pp. 555-561 | DOI

[66] Onyekachi, O. G.; Boniface, O. O.; Gemlack, N. F.; Nicholas, N. The effect of climate change on abiotic plant stress: A review, Abiotic and Biotic Stress in Plants, IntechOpen, 2019, pp. 71-83 | DOI

[67] Pesendorfer, M. B.; Bogdziewicz, M.; Koenig, W. D.; Ledwoń, M.; Żywiec, M. Declining fruit production before death in a widely distributed tree species, Sorbus aucuparia L., Annals of Forest Science, Volume 76 (2019) no. 1, p. 11 | DOI

[68] Potts, S. G.; Biesmeijer, J. C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W. E. Global pollinator declines: Trends, impacts and drivers, Trends in Ecology and Evolution, Volume 25 (2010), pp. 345-353 | DOI

[69] R Core Team R: A language and environment for statistical computing. Available at http://www.R-project.org/, R foundation for statistical computing, Vienna, Austria, 2020 (http://www.R-project.org/)

[70] Ramírez, N. Breeding systems of four plant communities in the Venezuelan central plains, Plant Systematics and Evolution, Volume 308 (2022) no. 2, p. 17 | DOI

[71] Ray, D. K.; Ramankutty, N.; Mueller, N. D.; West, P. C.; Foley, J. A. Recent patterns of crop yield growth and stagnation, Nature Communications, Volume 3 (2012), p. 1293 | DOI

[72] Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things), Methods in Ecology and Evolution, Volume 3 (2012) no. 2, pp. 217-223 | DOI

[73] Revell, L. J. Phylogenetic signal and linear regression on species data, Methods in Ecology and Evolution, Volume 1 (2010) no. 4, pp. 319-329 | DOI

[74] Rodger, J. G.; Bennett, J. M.; Razanajatovo, M.; Knight, T. M.; van Kleunen, M.; Ashman, T. L.; Steets, J. A.; Hui, C.; Arceo-Gómez, G.; Burd, M.; Burkle, L. A.; Burns, J. H.; Durka, W.; Freitas, L.; Kemp, J. E.; Li, J.; Pauw, A.; Vamosi, J. C.; Wolowski, M.; Xia, J.; Ellis, A. G. Widespread vulnerability of flowering plant seed production to pollinator declines, Science Advances, Volume 7 (2021) no. 42, p. eabd3524 | DOI

[75] Röös, E.; Mie, A.; Wivstad, M.; Salomon, E.; Johansson, B.; Gunnarsson, S.; Wallenbeck, A.; Hoffmann, R.; Nilsson, U.; Sundberg, C.; Watson, C. A. Risks and opportunities of increasing yields in organic farming. A review, Agronomy for Sustainable Development, Volume 38 (2018), p. 14 | DOI

[76] Sáez, A.; Aguilar, R.; Ashworth, L.; Gleiser, G.; Morales, C. L.; Traveset, A.; Aizen, M. A. Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops, Proceedings of the Royal Society B: Biological Sciences, Volume 289 (2022) no. 1972, p. 20220086 | DOI

[77] Sáez, A.; Aizen, M. A.; Medici, S.; Viel, M.; Villalobos, E.; Negri, P. Bees increase crop yield in an alleged pollinator-independent almond variety, Scientific Reports, Volume 10 (2020) no. 1, p. 3177 | DOI

[78] Savi, T.; Bertuzzi, S.; Branca, S.; Tretiach, M.; Nardini, A. Drought-induced xylem cavitation and hydraulic deterioration: Risk factors for urban trees under climate change?, New Phytologist, Volume 205 (2015) no. 3, pp. 1106-1116 | DOI

[79] Schoen, D. J.; Schultz, S. T. Somatic mutation and evolution in plants, Annual Review of Ecology, Evolution, and Systematics, Volume 50 (2019), pp. 49-73 | DOI

[80] Stott, P. How climate change affects extreme weather events: Research can increasingly determine the contribution of climate change to extreme events such as droughts, Science, Volume 352 (2016) no. 6293, pp. 1517-1518 | DOI

[81] Takeda, S.; Matsuoka, M. Genetic approaches to crop improvement: Responding to environmental and population changes, Nature Reviews Genetics, Volume 9 (2008) no. 6, pp. 444-457 | DOI

[82] Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world, Science, Volume 327 (2010) no. 5967, pp. 818-822 | DOI

[83] The Plant List Version 2. Available at http://www.theplantlist.org., http://www.theplantlist.org/ (2013)

[84] Ummenhofer, C. C.; Meehl, G. A. Extreme weather and climate events with ecological relevance: A review, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 372, 2017 no. 1723 | DOI

[85] Winfree, R.; Aguilar, R.; Vazquez, D.; LeBuhn, G.; Aizen, M. A meta-analysis of bees´responses to anthropogenic disturbance, Ecology, Volume 90 (2009) no. 8, pp. 2068-2076 | DOI

[86] Wurz, A.; Grass, I.; Tscharntke, T. Hand pollination of global crops – A systematic review, Basic and Applied Ecology, Volume 56, 2021, pp. 299-321 | DOI

[87] Zattara, E. E.; Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness, One Earth, Volume 4 (2021) no. 1, pp. 114-123 | DOI

Cited by Sources: