Section: Genomics
Topic: Genetics/Genomics, Cell biology

Expression of cell-wall related genes is highly variable and correlates with sepal morphology

Corresponding author(s): Hartasánchez, Diego A. (diego.hartasanchezfrenk@unil.ch); Boudaoud, Arezki (arezki.boudaoud@polytechnique.edu); Monéger, Françoise (francoise.moneger@ens-lyon.fr)

10.24072/pcjournal.327 - Peer Community Journal, Volume 3 (2023), article no. e93.

Get full text PDF Peer reviewed and recommended by PCI
article image

Control of organ morphology is a fundamental feature of living organisms. There is, however, observable variation in organ size and shape within a given genotype. Taking the sepal of Arabidopsis as a model, we investigated whether we can use variability of gene expression alongside variability of organ morphology to identify gene regulatory networks potentially involved in organ size and shape determination. We produced a dataset composed of morphological parameters and genome-wide transcriptome obtained from 27 individual sepals from wild-type plants with nearly identical genetic backgrounds, environment, and developmental stage. Sepals exhibited appreciable variability in both morphology and transcriptome, with response to stimulus genes and cell-wall related genes displaying high variability in expression. We additionally identified five modules of co-expressed genes which correlated significantly with morphology, revealing biologically relevant gene regulatory networks. Interestingly, cell-wall related genes were overrepresented in two of the top three modules. Overall, our work highlights the benefit of using coupled variation in gene expression and phenotype in wild-type plants to shed light on the mechanisms underlying organ size and shape determination. Although causality between gene expression and sepal morphology has not been established, our approach opens the way to informed analysis for mutant characterization and functional studies.

Published online:
DOI: 10.24072/pcjournal.327
Type: Research article
Keywords: Arabidopsis thaliana; sepal morphology; gene expression variability

Hartasánchez, Diego A. 1, 2; Kiss, Annamaria 1; Battu, Virginie 1; Soraru, Charline 1; Delgado-Vaquera, Abigail 1; Massinon, Florian 1; Brasó-Vives, Marina 3, 4; Mollier, Corentin 1; Martin-Magniette, Marie-Laure 5, 6; Boudaoud, Arezki 1, 7; Monéger, Françoise 1

1 Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
2 Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
3 Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
4 Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
5 Université Paris-Saclay, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
6 Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005 Paris, France
7 LadHyX, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau Cedex 91128 France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_327,
     author = {Hartas\'anchez, Diego A. and Kiss, Annamaria and Battu, Virginie and Soraru, Charline and Delgado-Vaquera, Abigail and Massinon, Florian and Bras\'o-Vives, Marina and Mollier, Corentin and Martin-Magniette, Marie-Laure and Boudaoud, Arezki and Mon\'eger, Fran\c{c}oise},
     title = {Expression of cell-wall related genes is highly variable and correlates with sepal morphology},
     journal = {Peer Community Journal},
     eid = {e93},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.327},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.327/}
}
TY  - JOUR
AU  - Hartasánchez, Diego A.
AU  - Kiss, Annamaria
AU  - Battu, Virginie
AU  - Soraru, Charline
AU  - Delgado-Vaquera, Abigail
AU  - Massinon, Florian
AU  - Brasó-Vives, Marina
AU  - Mollier, Corentin
AU  - Martin-Magniette, Marie-Laure
AU  - Boudaoud, Arezki
AU  - Monéger, Françoise
TI  - Expression of cell-wall related genes is highly variable and correlates with sepal morphology
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.327/
DO  - 10.24072/pcjournal.327
LA  - en
ID  - 10_24072_pcjournal_327
ER  - 
%0 Journal Article
%A Hartasánchez, Diego A.
%A Kiss, Annamaria
%A Battu, Virginie
%A Soraru, Charline
%A Delgado-Vaquera, Abigail
%A Massinon, Florian
%A Brasó-Vives, Marina
%A Mollier, Corentin
%A Martin-Magniette, Marie-Laure
%A Boudaoud, Arezki
%A Monéger, Françoise
%T Expression of cell-wall related genes is highly variable and correlates with sepal morphology
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.327/
%R 10.24072/pcjournal.327
%G en
%F 10_24072_pcjournal_327
Hartasánchez, Diego A.; Kiss, Annamaria; Battu, Virginie; Soraru, Charline; Delgado-Vaquera, Abigail; Massinon, Florian; Brasó-Vives, Marina; Mollier, Corentin; Martin-Magniette, Marie-Laure; Boudaoud, Arezki; Monéger, Françoise. Expression of cell-wall related genes is highly variable and correlates with sepal morphology. Peer Community Journal, Volume 3 (2023), article  no. e93. doi : 10.24072/pcjournal.327. https://peercommunityjournal.org/articles/10.24072/pcjournal.327/

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.genomics.100243

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Álvarez-Buylla, E.; Chaos, A.; Aldana, M.; Benítez, M.; Cortes-Poza, Y.; Espinosa-Soto, C.; Hartasánchez, D.; Lotto, R.; Malkin, D.; Escalera Santos, G.; Padilla-Longoria, P. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape, PloS One, Volume 3, p. 3626 | DOI

[2] Araújo, I.; Pietsch, J.; Keizer, E.; Greese, B.; Balkunde, R.; Fleck, C.; Hülskamp, M. Stochastic gene expression in Arabidopsis thaliana, Nature Communications, Volume 8, p. 2132 | DOI

[3] Barbier de Reuille, P.; Routier-Kierzkowska, A.-L.; Kierzkowski, D.; Bassel, G. W.; Schüpbach, T.; Tauriello, G.; Bajpai, N.; Strauss, S.; Weber, A.; Kiss, A.; Burian, A.; Hofhuis, H.; Sapala, A.; Lipowczan, M.; Heimlicher, M. B.; Robinson, S.; Bayer, E. M.; Basler, K.; Koumoutsakos, P.; Roeder, A. H.; Aegerter-Wilmsen, T.; Nakayama, N.; Tsiantis, M.; Hay, A.; Kwiatkowska, D.; Xenarios, I.; Kuhlemeier, C.; Smith, R. S. MorphoGraphX: A platform for quantifying morphogenesis in 4D, eLife, Volume 4 (2015) | DOI

[4] Biot, E.; Cortizo, M.; Burguet, J.; Kiss, A.; Oughou, M.; Maugarny-Calès, A.; Gonçalves, B.; Adroher, B.; Andrey, P.; Boudaoud, A.; Laufs, P. Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis, Development, Volume 143, pp. 3417-3428 | DOI

[5] Bray, N.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification, Nature Biotechnology, Volume 34, pp. 525-527 | DOI

[6] Brooks, M.; Juang, C.; Katari, M.; Alvarez, J.; Pasquino, A.; Shih, H.; Huang, J.; Shanks, C.; Cirrone, J.; Coruzzi, G. ConnecTF: A platform to integrate transcription factor-gene interactions and validate regulatory networks, Plant Physiology, Volume 185, pp. 49-66 | DOI

[7] Chen, D.; Yan, W.; Fu, L.; Kaufmann, K. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana, Nature Communications, Volume 9, p. 4534 | DOI

[8] Cortijo, S.; Aydin, Z.; Ahnert, S.; Locke, J. Widespread inter-individual gene expression variability in Arabidopsis thaliana, Molecular Systems Biology, Volume 15, p. 8591 | DOI

[9] Cortijo, S.; Bhattarai, M.; Locke, J.; Ahnert, S. Co-expression Networks From Gene Expression Variability Between Genetically Identical Seedlings Can Reveal Novel Regulatory Relationships, Frontiers in Plant Science, Volume 11, p. 599464 | DOI

[10] Cosgrove, D. Growth of the plant cell wall, Nature Reviews Molecular Cell Biology, Volume 6, pp. 850-861 | DOI

[11] Czesnick, H.; Lenhard, M. Size control in plants–lessons from leaves and flowers, Cold Spring Harbor Perspectives in Biology, Volume 7, p. 019190 | DOI

[12] Dorrity, M.; Alexandre, C.; Hamm, M.; Vigil, A.; Fields, S.; Queitsch, C.; Cuperus, J. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution, Nature Communications, Volume 12, p. 3334 | DOI

[13] Espinosa-Soto, C.; Padilla-Longoria, P.; Alvarez-Buylla, E. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles, The Plant Cell, Volume 16, pp. 2923-2939 | DOI

[14] Franková, L.; Fry, S. Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides, Journal of Experimental Botany, Volume 64, pp. 3519-3550 | DOI

[15] Hartasánchez, D. A.; Kiss, A.; Battu, V.; Dumond, M.; Soraru, C.; Delgado-Vaquera, A.; Massinon, F.; Brasó-Vives, M.; Mollier, C.; Dubrulle, N.; Sénéchal, F.; Martin-Magniette, M.-L.; Boudaoud, A.; Monéger, F. Robustness of organ morphology is associated with modules of co-expressed genes related to plant cell wall, https://zenodo.org/record/6559804 (2022) | DOI

[16] Hartasánchez, D. A.; Kiss, A.; Battu, V.; Soraru, C.; Delgado-Vaquera, A.; Massinon, F.; Brasó-Vives, M.; Mollier, C.; Martin-Magniette, M.-L.; Boudaoud, A.; Monéger, F. Supplementary Tables for Expression of cell-wall related genes is highly variable and correlates with sepal morphology, https://zenodo.org/record/8146786 (2023) | DOI

[17] He, J.; Zhao, X.; Du, P.; Zeng, W.; Beahan, C.; Wang, Y.; Li, H.; Bacic, A.; Wu, A. KNAT7 positively regulates xylan biosynthesis by directly activating IRX9 expression in Arabidopsis, Journal of Integrative Plant Biology, Volume 60, pp. 514-528 | DOI

[18] Hervieux, N.; Dumond, M.; Sapala, A.; Routier-Kierzkowska, A.; Kierzkowski, D.; Roeder, A.; Smith, R.; Boudaoud, A.; Hamant, O. A Mechanical Feedback Restricts Sepal Growth and Shape in Arabidopsis, Current Biology, Volume 26, pp. 1019-1028 | DOI

[19] Hisanaga, T.; Kawade, K.; Tsukaya, H. Compensation: a key to clarifying the organ-level regulation of lateral organ size in plants, Journal of Experimental Botany, Volume 66, pp. 1055-1063 | DOI

[20] Hong, L.; Dumond, M.; Tsugawa, S.; Sapala, A.; Routier-Kierzkowska, A.; Zhou, Y.; Chen, C.; Kiss, A.; Zhu, M.; Hamant, O.; Smith, R.; Komatsuzaki, T.; Li, C.; Boudaoud, A.; Roeder, A. Variable Cell Growth Yields Reproducible Organ Development through Spatiotemporal Averaging, Developmental Cell, Volume 38, pp. 15-32 | DOI

[21] Hou, Z.; Liu, Y.; Zhang, M.; Zhao, L.; Jin, X.; Liu, L.; Su, Z.; Cai, H.; Qin, Y. High-throughput single-cell transcriptomics reveals the female germline differentiation trajectory in Arabidopsis thaliana, Communications Biology, Volume 4, p. 1149 | DOI

[22] Huynh-Thu, V.; Irrthum, A.; Wehenkel, L.; Geurts, P. Inferring regulatory networks from expression data using tree-based methods, PloS One, Volume 5, p. 12776 | DOI

[23] La Rota, C.; Chopard, J.; Das, P.; Paindavoine, S.; Rozier, F.; Farcot, E.; Godin, C.; Traas, J.; Monéger, F. A Data-Driven Integrative Model of Sepal Primordium Polarity in Arabidopsis    , The Plant Cell, Volume 23 (2011) no. 12, pp. 4318-4333 | DOI

[24] Langfelder, P.; Horvath, S. WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics, Volume 9, p. 559 | DOI

[25] Li, E.; Bhargava, A.; Qiang, W.; Friedmann, M.; Forneris, N.; Savidge, R.; Johnson, L.; Mansfield, S.; Ellis, B.; Douglas, C. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus, The New Phytologist, Volume 194, pp. 102-115 | DOI

[26] Liu, J.; Frochaux, M.; Gardeux, V.; Deplancke, B.; Robinson-Rechavi, M. Inter-embryo gene expression variability recapitulates the hourglass pattern of evo-devo, BMC Biology, Volume 18, p. 129 | DOI

[27] Long, Y.; Boudaoud, A. Emergence of robust patterns from local rules during plant development, Current Opinion in Plant Biology, Volume 47, pp. 127-137 | DOI

[28] Lucas, M.; Laplaze, L.; Bennett, M. Plant systems biology: network matters, Plant, Cell Environment, Volume 34, pp. 535-553 | DOI

[29] Lê Cao, K.-A.; Rossouw, D.; Robert-Granié, C.; Besse, P. A Sparse PLS for Variable Selection when Integrating Omics Data, Statistical Applications in Genetics and Molecular Biology, Volume 7 (2008) no. 1 | DOI

[30] Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.; Mushayamaha, T.; Thomas, P. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API, Nucleic Acids Research, Volume 49, p. 394 | DOI

[31] Nakano, Y.; Yamaguchi, M.; Endo, H.; Rejab, N.; Ohtani, M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants, Frontiers in Plant Science, Volume 6, p. 288 | DOI

[32] O'Malley, R.; Huang, S.; Song, L.; Lewsey, M.; Bartlett, A.; Nery, J.; M, G.; A, J. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape, Cell, Volume 165, pp. 1280-1292 | DOI

[33] Qin, W.; Yin, Q.; Chen, J.; Zhao, X.; Yue, F.; He, J.; Yang, L.; Liu, L.; Zeng, Q.; Lu, F.; Mitsuda, N.; Ohme-Takagi, M.; Wu, A. The class II KNOX transcription factors KNAT3 and KNAT7 synergistically regulate monolignol biosynthesis in Arabidopsis, Journal of Experimental Botany, Volume 71, pp. 5469-5483 | DOI

[34] Queitsch, C.; Sangster, T.; Lindquist, S. Hsp90 as a capacitor of phenotypic variation, Nature, Volume 417, pp. 618-624 | DOI

[35] R Core Team R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria., 2021 (https://www.R-project.org/)

[36] Renard, J.; Niñoles, R.; Martínez-Almonacid, I.; Gayubas, B.; Mateos-Fernández, R.; Bissoli, G.; Bueso, E.; Serrano, R.; Gadea, J. Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics, Plant, Cell Environment, Volume 43, pp. 2523-2539 | DOI

[37] Robinson, M.; McCarthy, D.; Smyth, G. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, Volume 26, pp. 139-140 | DOI

[38] Roeder, A. Arabidopsis sepals: A model system for the emergent process of morphogenesis, Quantitative Plant Biology, Volume 2, p. 14 | DOI

[39] Sabot, F. The same but different: How small scale hidden variations can have large effects, Peer Community in Genomics, Volume 1 (2023), p. 100243 | DOI

[40] Smyth, D.; Bowman, J.; Meyerowitz, E. Early flower development in Arabidopsis, The Plant Cell, Volume 2, pp. 755-767 | DOI

[41] Soneson, C.; Love, M.; Robinson, M. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences, F1000Research, Volume 4 | DOI

[42] Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update, Nucleic Acids Research, Volume 45, p. 122 | DOI

[43] Timmons, J.; Szkop, K.; Gallagher, I. Multiple sources of bias confound functional enrichment analysis of global -omics data, Genome Biology, Volume 16, p. 186 | DOI

[44] Wang, S.; Yamaguchi, M.; Grienenberger, E.; Martone, P.; Samuels, A.; Mansfield, S. The Class II KNOX genes KNAT3 and KNAT7 work cooperatively to influence deposition of secondary cell walls that provide mechanical support to Arabidopsis stems, The Plant Journal, Volume 101, pp. 293-309 | DOI

[45] Zheng, Y.; Roberts, R.; Kasif, S. Segmentally variable genes: a new perspective on adaptation, PLoS Biology, Volume 2, p. 81 | DOI

[46] Zhong, R.; Ye, Z. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation, Plant Cell Physiology, Volume 56, pp. 195-214 | DOI

[47] Zhu, M.; Chen, W.; Mirabet, V.; Hong, L.; Bovio, S.; Strauss, S.; Schwarz, E.; Tsugawa, S.; Wang, Z.; Smith, R.; Li, C.; Hamant, O.; Boudaoud, A.; Roeder, A. Robust organ size requires robust timing of initiation orchestrated by focused auxin and cytokinin signalling, Nature Plants, Volume 6, pp. 686-698 | DOI

Cited by Sources:

block.super