Section: Mathematical & Computational Biology
Topic: Population biology, Applied mathematics, Statistics

A mechanistic-statistical approach to infer dispersal and demography from invasion dynamics, applied to a plant pathogen

10.24072/pcjournal.356 - Peer Community Journal, Volume 4 (2024), article no. e9.

Get full text PDF Peer reviewed and recommended by PCI

Dispersal, and in particular the frequency of long-distance dispersal (LDD) events, has strong implications for population dynamics with possibly the acceleration of the colonisation front, and for evolution with possibly the conservation of genetic diversity along the colonised domain. However, accurately inferring LDD is challenging as it requires both large-scale data and a methodology that encompasses the redistribution of individuals in time and space. Here, we propose a mechanistic-statistical framework to estimate dispersal from one-dimensional invasions. The mechanistic model takes into account population growth and grasps the diversity in dispersal processes by using either diffusion, leading to a reaction-diffusion (R.D.) formalism, or kernels, leading to an integro-differential (I.D.) formalism. The latter considers different dispersal kernels (e.g. Gaussian, Exponential, and Exponential-power) differing in their frequency of LDD events. The statistical model relies on dedicated observation laws that describe two types of samples, clumped or not. As such, we take into account the variability in both habitat suitability and occupancy perception. We first check the identifiability of the parameters and the confidence in the selection of the dispersal process. We observed good identifiability for all parameters (correlation coefficient >0.9 between true and fitted values). The dispersal process that is the most confidently identified is Exponential-Power (i.e. fat-tailed) kernel. We then applied our framework to data describing an annual invasion of the poplar rust disease along the Durance River valley over nearly 200 km. This spatio-temporal survey consisted of 12 study sites examined at seven time points. We confidently estimated that the dispersal of poplar rust is best described by an Exponential-power kernel with a mean dispersal distance of 1.94 km and an exponent parameter of 0.24 characterising a fat-tailed kernel with frequent LDD events. By considering the whole range of possible dispersal processes our method forms a robust inference framework. It can be employed for a variety of organisms, provided they are monitored in time and space along a one-dimension invasion.

Published online:
DOI: 10.24072/pcjournal.356
Type: Research article
Saubin, Méline 1; Coville, Jérome 2; Xhaard, Constance 1, 2, 3; Frey, Pascal 1; Soubeyrand, Samuel 2; Halkett, Fabien 1; Fabre, Frédéric 4

1 Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
2 INRAE, BioSP, 84914 Avignon, France
3 Université de Lorraine, INSERM CIC-P 1433, CHRU de Nancy, INSERM U1116, Nancy, France
4 INRAE, Bordeaux Sciences Agro, SAVE, F-33882 Villenave d’Ornon, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Saubin, M\'eline and Coville, J\'erome and Xhaard, Constance and Frey, Pascal and Soubeyrand, Samuel and Halkett, Fabien and Fabre, Fr\'ed\'eric},
     title = {A mechanistic-statistical approach to infer dispersal and demography from invasion dynamics, applied to a plant pathogen},
     journal = {Peer Community Journal},
     eid = {e9},
     publisher = {Peer Community In},
     volume = {4},
     year = {2024},
     doi = {10.24072/pcjournal.356},
     language = {en},
     url = {}
AU  - Saubin, Méline
AU  - Coville, Jérome
AU  - Xhaard, Constance
AU  - Frey, Pascal
AU  - Soubeyrand, Samuel
AU  - Halkett, Fabien
AU  - Fabre, Frédéric
TI  - A mechanistic-statistical approach to infer dispersal and demography from invasion dynamics, applied to a plant pathogen
JO  - Peer Community Journal
PY  - 2024
VL  - 4
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.356
LA  - en
ID  - 10_24072_pcjournal_356
ER  - 
%0 Journal Article
%A Saubin, Méline
%A Coville, Jérome
%A Xhaard, Constance
%A Frey, Pascal
%A Soubeyrand, Samuel
%A Halkett, Fabien
%A Fabre, Frédéric
%T A mechanistic-statistical approach to infer dispersal and demography from invasion dynamics, applied to a plant pathogen
%J Peer Community Journal
%D 2024
%V 4
%I Peer Community In
%R 10.24072/pcjournal.356
%G en
%F 10_24072_pcjournal_356
Saubin, Méline; Coville, Jérome; Xhaard, Constance; Frey, Pascal; Soubeyrand, Samuel; Halkett, Fabien; Fabre, Frédéric. A mechanistic-statistical approach to infer dispersal and demography from invasion dynamics, applied to a plant pathogen. Peer Community Journal, Volume 4 (2024), article  no. e9. doi : 10.24072/pcjournal.356.

Peer reviewed and recommended by PCI : 10.24072/pci.mcb.100191

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Alfaro, M.; Coville, J. Propagation phenomena in monostable integro-differential equations: Acceleration or not?, Journal of Differential Equations, Volume 263 (2017) no. 9, pp. 5727-5758 | DOI

[2] Allaire, G. Analyse numérique et optimisation : une introduction à la modélisation mathématique et à la simulation numérique, Editions Ecole Polytechnique, 2012 (

[3] Aronson, D. G.; Weinberger, H. F. Multidimensional nonlinear diffusion arising in population genetics, Advances in Mathematics, Volume 30 (1978) no. 1, pp. 33-76 | DOI

[4] Aylor, D. E. Spread of plant disease on a continental scale: Role of aerial dispersal of pathogens, Ecology, Volume 84 (2003) no. 8, pp. 1989-1997 | DOI

[5] Barrès, B.; Halkett, F.; Dutech, C.; Andrieux, A.; Pinon, J.; Frey, P. Genetic structure of the poplar rust fungus Melampsora larici-populina: Evidence for isolation by distance in Europe and recent founder effects overseas, Infection, Genetics and Evolution, Volume 8 (2008) no. 5, pp. 577-587 | DOI

[6] Becheler, R.; Xhaard, C.; Klein, E.; Hayden, K. J.; Frey, P.; De Mita, S.; Halkett, F. Genetic signatures of a range expansion in natura: when clones play leapfrog, Ecology and Evolution, Volume 6 (2016) no. 18, pp. 6625-6632 | DOI

[7] Beckie, H. J.; Hall, L. M. Simple to complex: Modelling crop pollen-mediated gene flow, Plant Science, Volume 175 (2008) no. 5, pp. 615-628 | DOI

[8] Berliner, L. M. Physical-statistical modeling in geophysics, Journal of Geophysical Research, Volume 108 (2003) no. 24, p. 8776 | DOI

[9] Bialozyt, R.; Ziegenhagen, B.; Petit, R. J. Contrasting effects of long distance seed dispersal on genetic diversity during range expansion, Journal of Evolutionary Biology, Volume 19 (2006) no. 1, pp. 12-20 | DOI

[10] Bonnefon, O.; Coville, J.; Garnier, J.; Hamel, F.; Roques, L. The spatio-temporal dynamics of neutral genetic diversity, Ecological Complexity, Volume 20 (2014), pp. 282-292 | DOI

[11] Bouin, E.; Coville, J.; Legendre, G. Sharp exponent of acceleration in general nonlocal equations with a weak Allee effect, arXiv (2021), pp. 1-45 | DOI

[12] Bouin, E.; Garnier, J.; Henderson, C.; Patout, F. Thin front limit of an integro-differential Fisher-KPP equation with fat-tailed kernels, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 3, pp. 3365-3394 | DOI

[13] Bourgeois, A.; Gaba, S.; Munier-Jolain, N.; Borgy, B.; Monestiez, P.; Soubeyrand, S. Inferring weed spatial distribution from multi-type data, Ecological Modelling, Volume 226 (2012), pp. 92-98 | DOI

[14] Bousset, L.; Jumel, S.; Garreta, V.; Picault, H.; Soubeyrand, S. Transmission of Leptosphaeria maculans from a cropping season to the following one, Annals of Applied Biology, Volume 166 (2015) no. 3, pp. 530-543 | DOI

[15] Brown, J. K. M.; Hovmoller, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease, Science, Volume 297 (2002), pp. 537-541 | DOI

[16] Chagneau, P.; Mortier, F.; Picard, N.; Bacro, J. A hierarchical Bayesian model for spatial prediction of multivariate non-Gaussian random fields, Biometrics, Volume 67 (2011) no. 1, pp. 97-105 | DOI

[17] Chen, X. Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Advances in Differential Equations, Volume 2 (1997) no. 1, pp. 125-160 | DOI

[18] Clark, J. S.; Lewis, M.; Horvath, L. Invasion by extremes: Population spread with variation in dispersal and reproduction, American Naturalist, Volume 157 (2001) no. 5, pp. 537-554 | DOI

[19] Clobert, J.; Ims, R. A.; Rousset, F. Causes, mechanisms and consequences of dispersal, Ecology, genetics and evolution of metapopulations, Elsevier, 2004, pp. 307-335 | DOI

[20] Cressie, N.; Calder, C. A.; Clark, J. S.; Ver Hoef, J. M.; Wikle, C. K. Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling, Ecological Applications, Volume 19 (2009) no. 3, pp. 553-570 | DOI

[21] Dennis, B. Allee effects: Population growth, critical density, and the chance of extinction, Natural Resource Modeling, Volume 3 (1989) no. 4, pp. 481-538 | DOI

[22] Dybiec, B.; Kleczkowski, A.; Gilligan, C. A. Modelling control of epidemics spreading by long-range interactions, Journal of the Royal Society Interface, Volume 6 (2009) no. 39, pp. 941-950 | DOI

[23] Edmonds, C. A.; Lillie, A. S.; Cavalli-Sforza, L. L. Mutations arising in the wave front of an expanding population, Proceedings of the National Academy of Sciences, Volume 101 (2004) no. 4, pp. 975-979 | DOI

[24] Fabre, F.; Coville, J.; Cunniffe, N. J. Optimising reactive disease management using spatially explicit models at the landscape scale, Plant disease and food security in the 21st century, Springer International Publishing, 2021, pp. 47-72 | DOI

[25] Fayard, J.; Klein, E.; Lefèvre, F. Long distance dispersal and the fate of a gene from the colonization front, Journal of Evolutionary Biology, Volume 22 (2009) no. 11, pp. 2171-2182 | DOI

[26] Ferrandino, F. J. Lenght scale of disease spread: Fact or artifact of experimental geometry, Phytopathology, Volume 86 (1996), pp. 806-811

[27] Ferrandino, F. J. Dispersive Epidemic Waves: I. Focus Expansion within a Linear Planting, Phytopathology, Volume 83 (1993) no. 8 | DOI

[28] Fife, P. C. An integrodifferential analog of semilinear parabolic PDEs, Partial differential equations and applications (Lecture Notes in Pure and Appl. Math.), Volume 177, Dekker, New York, 1996, pp. 137-145

[29] Filipe, J. A. N.; Cobb, R. C.; Meentemeyer, R. K.; Lee, C. A.; Valachovic, Y. S.; Cook, A. R.; Rizzo, D. M.; Gilligan, C. A. Landscape Epidemiology and Control of Pathogens with Cryptic and Long-Distance Dispersal: Sudden Oak Death in Northern Californian Forests, PLoS Computational Biology, Volume 8 (2012) no. 1 | DOI

[30] Gandon, S.; Michalakis, Y. Local adaptation, evolutionary potential and host-parasite coevolution: Interactions between migration, mutation, population size and generation time, Journal of Evolutionary Biology, Volume 15 (2002) no. 3, pp. 451-462 | DOI

[31] Garnier, J. Accelerating solutions in integro-differential equations, SIAM Journal on Mathematical Analysis, Volume 43 (2011), pp. 1955-1974 | DOI

[32] Georgescu, V.; Desassis, N.; Soubeyrand, S.; Kretzschmar, A.; Senoussi, R. An automated MCEM algorithm for hierarchical models with multivariate and multitype response variables, Communications in Statistics - Theory and Methods, Volume 43 (2014) no. 17, pp. 3698-3719 | DOI

[33] Gotway, C. A.; Young, L. J. Combining incompatible spatial data, Journal of the American Statistical Association, Volume 97 (2002) no. 458, pp. 632-648 | DOI

[34] Grosdidier, M.; Ioos, R.; Husson, C.; Cael, O.; Scordia, T.; Marccais, B. Tracking the invasion: dispersal of Hymenoscyphus fraxineus airborne inoculum at different scales, FEMS Microbiology Ecology, Volume 94 (2018) no. 5, pp. 1-11 | DOI

[35] Hallatschek, O.; Fisher, D. S. Acceleration of evolutionary spread by long-range dispersal, Proceedings of the National Academy of Sciences, Volume 111 (2014) no. 46, p. E4911-E4919 | DOI

[36] Hallatschek, O.; Hersen, P.; Ramanathan, S.; Nelson, D. R. Genetic drift at expanding frontiers promotes gene segregation, Proceedings of the National Academy of Sciences, Volume 104 (2007) no. 50, pp. 19926-19930 | DOI

[37] Hapca, S.; Crawford, J. W.; Young, I. M. Anomalous diffusion of heterogeneous populations characterized by normal diffusion at the individual level, Journal of the Royal Society Interface, Volume 6 (2009) no. 30, pp. 111-122 | DOI

[38] Hefley, T. J.; Hooten, M. B.; Russell, R. E.; Walsh, D. P.; Powell, J. A. When mechanism matters: Bayesian forecasting using models of ecological diffusion, Ecology Letters, Volume 20 (2017) no. 5, pp. 640-650 | DOI

[39] Hutson, V.; Martinez, S.; Mischaikow, K.; Vickers, G. T. The evolution of dispersal, Journal of Mathematical Biology, Volume 47 (2003) no. 6, pp. 483-517 | DOI

[40] Ibrahim, K. M.; Nichols, R. A.; Hewitt, G. M. Spatial patterns of genetic variation generated by different forms of dispersal during range expansion, Heredity, Volume 77 (1996), pp. 282-291 | DOI

[41] Klein, E.; Lavigne, C.; Picault, H.; Renard, M.; Gouyon, P. H. Pollen dispersal of oilseed rape: Estimation of the dispersal function and effects of field dimension, Journal of Applied Ecology, Volume 43 (2006) no. 1, pp. 141-151 | DOI

[42] Kolmogorov, A. N.; Petrovsky, I. G.; Piskunov, N. S. Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Universit'e d''Etat `a Moscow (Bjul. Moskowskogo Gos. Univ) (1937), pp. 1-26

[43] Kot, M.; Lewis, M. A.; van den Driessche, P. Dispersal data and the spread of invading organisms, Ecology, Volume 77 (1996) no. 7, pp. 2027-2042 | DOI

[44] Kuparinen, A.; Snäll, T.; Vänskä, S.; O'Hara, R. B. The role of model selection in describing stochastic ecological processes, Oikos, Volume 116 (2007) no. 6, pp. 966-974 | DOI

[45] Lewis, M. A.; Kareiva, P. Allee dynamics and the spread of invading organisms, Theoretical Population Biology, Volume 42 (1993), pp. 141-158 | DOI

[46] Louvrier, J.; Papaïx, J.; Duchamp, C.; Gimenez, O. A mechanistic-statistical species distribution model to explain and forecast wolf (Canis lupus) colonization in South-Eastern France, Spatial Statistics, Volume 36 (2020), p. 100428 | DOI

[47] Macdonald, D. W.; Johnson, D. D. P. Dispersal in theory and practice: consequences for conservation biology, Dispersal, Oxford University Press, Oxford, UK, 2001, pp. 361-374 | DOI

[48] Maupetit, A.; Larbat, R.; Pernaci, M.; Andrieux, A.; Guinet, C.; Boutigny, A. L.; Fabre, B.; Frey, P.; Halkett, F. Defense compounds rather than nutrient availability shape aggressiveness trait variation along a leaf maturity gradient in a biotrophic plant pathogen, Frontiers in Plant Science, Volume 9 (2018) | DOI

[49] Medlock, J.; Kot, M. Spreading disease: Integro-differential equations old and new, Mathematical Biosciences, Volume 184 (2003) no. 2, pp. 201-222

[50] Miller, T. E. X.; Angert, A. L.; Brown, C. D.; Lee-Yaw, J. A.; Lewis, M.; Lutscher, F.; Marculis, N. G.; Melbourne, B. A.; Shaw, A. K.; Szűcs, M.; Tabares, O.; Usui, T.; Weiss-Lehman, C.; Williams, J. L. Eco-evolutionary dynamics of range expansion, Ecology, Volume 101 (2020) no. 10, pp. 1-14 | DOI

[51] Mollison, D. Spatial contact models for ecological and epidemic spread, Journal of the Royal Statistical Society: Series B (Methodological) , Volume 39 (1977), pp. 283-326

[52] Mundt, C. C.; Sackett, K. E.; Wallace, L. D.; Cowger, C.; Dudley, J. P. Long-distance dispersal and accelerating waves of disease: Empirical relationships, American Naturalist, Volume 173 (2009) no. 4, pp. 456-466 | DOI

[53] Murray, J. D. Mathematical Biology, 17, Springer-Verlag, 2002 | DOI

[54] Nathan, R. The challenges of studying dispersal, Trends in Ecology and Evolution, Volume 16 (2001) no. 9, pp. 481-483 | DOI

[55] Nathan, R.; Klein, E.; Robledo-Arnuncio, J. J.; Revilla, E. 15 - Dispersal kernels: Review, Dispersal ecology and evolution, Oxford, 2012, pp. 186-210

[56] Nembot Fomba, C. G.; Ten Hoopen, G. M.; Soubeyrand, S.; Roques, L.; Ambang, Z.; Takam Soh, P. Parameter estimation in a PDE model for the spatial spread of cocoa black pod disease, Bulletin of Mathematical Biology, Volume 83 (2021), pp. 1-28 | DOI

[57] Nichols, R. A.; Hewitt, G. M. The genetic consequences of long distance dispersal during colonization, Heredity, Volume 72 (1994), pp. 312-317 | DOI

[58] Ojiambo, P. S.; Gent, D. H.; Quesada-Ocampo, L. M.; Hausbeck, M. K.; Holmes, G. J. Epidemiology and population biology of Pseudoperonospora cubensis: A model system for management of downy mildews, Annual Review of Phytopathology, Volume 53 (2015) no. 1, pp. 223-246 | DOI

[59] Okubo, A.; Levin, S. A. Diffusion and Ecological Problems – Modern Perspectives, Second edition, Springer-Verlag, New York, 2002 | DOI

[60] Pan, Z.; Li, X.; Yang, X. B.; Andrade, D.; Xue, L.; McKinney, N. Prediction of plant diseases through modelling and monitoring airborne pathogen dispersal, CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, Volume 5 (2010) no. 018 | DOI

[61] Papaïx, J.; Soubeyrand, S.; Bonnefon, O.; Walker, E.; Louvrier, J.; Klein, E.; Roques, L. Inferring mechanistic models in spatial ecology using a mechanistic-statistical approach, Statistical Approaches for Hidden Variables in Ecology, Wiley, 2022, pp. 69-95 | DOI

[62] Petit, R. J. Biological invasions at the gene level, Diversity and Distributions, Volume 10 (2004) no. 3, pp. 159-165 | DOI

[63] Petit, R. J. Early insights into the genetic consequences of range expansions, Heredity, Volume 106 (2011), pp. 203-204 | DOI

[64] R Core Team R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2018

[65] Rieux, A.; Soubeyrand, S.; Bonnot, F.; Klein, E. K.; Ngando, J. E.; Mehl, A.; Ravigne, V.; Carlier, J.; Bellaire, L. Long-distance wind-dispersal of spores in a fungal plant pathogen: Estimation of anisotropic dispersal kernels from an extensive field experiment, PLoS One, Volume 9 (2014) no. 8, p. e103225 | DOI

[66] Ritz, C.; Baty, F.; Streibig, J. C.; Gerhard, D. Dose-Response analysis using R, PLoS One, Volume 10 (2015) no. 12 | DOI

[67] Rohani, P.; Keeling, M. J.; Grenfell, B. T. The interplay between determinism and stochasticity in childhood diseases, The American Naturalist, Volume 159 (2002), pp. 469-481 | DOI

[68] Roques, L.; Soubeyrand, S.; Rousselet, J. A statistical-reaction-diffusion approach for analyzing expansion processes, Journal of Theoretical Biology, Volume 274 (2011) no. 1, pp. 43-51 | DOI

[69] Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, Journal of the Royal Statistical Society: Series B (Statistical Methodology), Volume 71 (2009) no. 2, pp. 319-392 | DOI

[70] Severns, P. M.; Sackett, K. E.; Farber, D. H.; Mundt, C. C. Consequences of long-distance dispersal for epidemic spread: Patterns, scaling, and mitigation, Plant Disease, Volume 103 (2019) no. 2, pp. 177-191 | DOI

[71] Shigesada, N.; Kawasaki, K. Biological invasions: Theory and practice, Oxford University Press, UK, 1997

[72] Soubeyrand, S.; Laine, A. L.; Hanski, I.; Penttinen, A. Spatio-temporal structure of host-pathogen interactions in a metapopulation, The American Naturalist, Volume 174 (2009) no. 3, pp. 308-320 | DOI

[73] Soubeyrand, S.; Neuvonen, S.; Penttinen, A. Mechanical-statistical modeling in ecology: From outbreak detections to pest dynamics, Bulletin of Mathematical Biology, Volume 71 (2009), pp. 318-338

[74] Soubeyrand, S.; Roques, L. Parameter estimation for reaction-diffusion models of biological invasions, Population Ecology, Volume 56 (2014) no. 2, pp. 427-434 | DOI

[75] Soubeyrand, S.; Sache, I.; Hamelin, F.; Klein, E. K. Evolution of dispersal in asexual populations: to be independent, clumped or grouped?, Evolutionary Ecology, Volume 29 (2015), pp. 947-963 | DOI

[76] Soubeyrand, S.; de Jerphanion, P.; Martin, O.; Saussac, M.; Manceau, C.; Hendrikx, P.; Lannou, C. Inferring pathogen dynamics from temporal count data: the emergence of Xylella fastidiosa in France is probably not recent, New Phytologist, Volume 219 (2018), pp. 824-836

[77] Szymańska, Z.; Skrzeczkowski, J.; Miasojedow, B.; Gwiazda, P. Bayesian inference of a non-local proliferation model, Royal Society Open Science, Volume 8 (2021) no. 11 | DOI

[78] Wikle, C. K. Hierarchical models in environmental science, International Statistical Review, Volume 71 (2003) no. 2, pp. 181-199 | DOI

[79] Wikle, C. K. Hierarchical Bayesian models for predicting the spread of ecological processes, Ecology, Volume 84 (2003) no. 6, pp. 1382-1394 | DOI

[80] Xhaard, C.; Barrès, B.; Andrieux, A.; Bousset, L.; Halkett, F.; Frey, P. Disentangling the genetic origins of a plant pathogen during disease spread using an original molecular epidemiology approach, Molecular Ecology, Volume 21 (2012) no. 10, pp. 2383-2398 | DOI

Cited by Sources: