Section: Infections
Topic: Ecology, Statistics, Health sciences

Assessing the dynamics of  Mycobacterium bovis infection in three French badger populations

10.24072/pcjournal.363 - Peer Community Journal, Volume 4 (2024), article no. e10.

Get full text PDF Peer reviewed and recommended by PCI

The Sylvatub system is a national surveillance program established in 2011 in France to monitor infections caused by Mycobacterium bovis, the main etiologic agent of bovine tuberculosis, in wild species. This participatory program, involving both national and local stakeholders, allowed us to monitor the progression of the infection in three badger populations in clusters covering between 3222 km2 and 7698 km2 from 2013 to 2019. In each cluster, badgers were trapped and tested for M. bovis. Our first aim was to describe the dynamics of the infection in these clusters. We developed a Bayesian model of prevalence accounting for the spatial structure of the cases, the imperfect and variable sensitivity of the diagnostic tests, and the correlation of the infection status of badgers in the same commune caused by local factors (e.g., social structure and proximity to infected farms). This model revealed that the prevalence increased with time in one cluster (Dordogne/Charentes), decreased in the second cluster (Burgundy), and remained stable in the third cluster (Bearn). In all the clusters, the infection was strongly spatially structured, whereas the mean correlation between the infection status of the animals trapped in the same commune was negligible. Our second aim was to develop indicators for monitoring M. bovis infection by stakeholders of the program. We used the model to estimate, in each cluster, (i) the mean prevalence level at mid-period, and (ii) the proportion of the badger population that became infected in one year. We then derived two indicators of these two key quantities from a much simpler regression model, and we showed how these two indicators could be easily used to monitor the infection in the three clusters. We showed with simulations that these two simpler indicators were good approximations of these key quantities.

Published online:
DOI: 10.24072/pcjournal.363
Type: Research article
Calenge, Clément 1; Payne, Ariane 2; Réveillaud, Édouard 3; Richomme, Céline 4; Girard, Sébastien 5; Desvaux, Stéphanie 6

1 Office Français de la Biodiversité -- Direction Surveillance, Évaluation, Données -- Unité Données et Appui Méthodologique, Saint Benoist, BP 20. 78612 Le Perray en Yvelines, France
2 Office Français de la Biodiversité -- Research and Scientific Support Direction, Service Santé Agri, 45100 Orléans
3 Regional Directorate for Food of Nouvelle-Aquitaine, Limoges, France
4 ANSES, Nancy Laboratory for Rabies and Wildlife, Malzéville, France
5 Regional Directorate for Food of Bourgogne-Franche-Comté, Dijon, France
6 Office Français de la Biodiversité -- Research and Scientific Support Direction , Service Santé Agri, 01330 Birieux, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Calenge, Cl\'ement and Payne, Ariane and R\'eveillaud, \'Edouard and Richomme, C\'eline and Girard, S\'ebastien and Desvaux, St\'ephanie},
     title = {Assessing the dynamics of~ {\protect\emph{Mycobacterium} bovis} infection in three {French} badger populations},
     journal = {Peer Community Journal},
     eid = {e10},
     publisher = {Peer Community In},
     volume = {4},
     year = {2024},
     doi = {10.24072/pcjournal.363},
     language = {en},
     url = {}
AU  - Calenge, Clément
AU  - Payne, Ariane
AU  - Réveillaud, Édouard
AU  - Richomme, Céline
AU  - Girard, Sébastien
AU  - Desvaux, Stéphanie
TI  - Assessing the dynamics of  Mycobacterium bovis infection in three French badger populations
JO  - Peer Community Journal
PY  - 2024
VL  - 4
PB  - Peer Community In
UR  -
DO  - 10.24072/pcjournal.363
LA  - en
ID  - 10_24072_pcjournal_363
ER  - 
%0 Journal Article
%A Calenge, Clément
%A Payne, Ariane
%A Réveillaud, Édouard
%A Richomme, Céline
%A Girard, Sébastien
%A Desvaux, Stéphanie
%T Assessing the dynamics of  Mycobacterium bovis infection in three French badger populations
%J Peer Community Journal
%D 2024
%V 4
%I Peer Community In
%R 10.24072/pcjournal.363
%G en
%F 10_24072_pcjournal_363
Calenge, Clément; Payne, Ariane; Réveillaud, Édouard; Richomme, Céline; Girard, Sébastien; Desvaux, Stéphanie. Assessing the dynamics of  Mycobacterium bovis infection in three French badger populations. Peer Community Journal, Volume 4 (2024), article  no. e10. doi : 10.24072/pcjournal.363.

Peer reviewed and recommended by PCI : 10.24072/pci.infections.100088

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Bouchez-Zacria, M.; Courcoul, A.; Durand, B. The Distribution of Bovine Tuberculosis in Cattle Farms Is Linked to Cattle Trade and Badger-Mediated Contact Networks in South-Western France, 2007–2015, Frontiers in Veterinary Science, Volume 5 (2018) | DOI

[2] Bouchez-Zacria, M.; Payne, A.; Girard, S.; Richomme, C.; Boschiroli, M.-L.; Marsot, M.; Durand, B.; Desvaux, S. Spatial association of Mycobacterium bovis infection in cattle and badgers at the pasture interface in an endemic area in France, Preventive Veterinary Medicine, Volume 220 (2023), p. 106044 | DOI

[3] Byrne, A. W.; O’Keeffe, J.; Green, S.; Sleeman, D. P.; Corner, L. A. L.; Gormley, E.; Murphy, D.; Martin, S. W.; Davenport, J. Population Estimation and Trappability of the European Badger (Meles meles): Implications for Tuberculosis Management, PLoS ONE, Volume 7 (2012) no. 12, p. e50807 | DOI

[4] Calenge, C. ClementCalenge/badgertub: Companion R package to the paper by Calenge et al. on bovine TB and badger, Zenodo, 2023 | DOI

[5] Calenge, C.; Payne, A.; Reveillaud, E.; Richomme, C.; Girard, S.; Desvaux, S. Data used by Calenge et al. in "Assessing the dynamics of Mycobacterium bovis infection in three French badger populations", Zenodo, 2023 | DOI

[6] Cheeseman, C. L.; Mallinson, P. J. Behaviour of badgers (Meles meles) infected with bovine tuberculosis, Journal of Zoology, Volume 194 (1981) no. 2, pp. 284-289 | DOI

[7] Danielsen, F.; Mendoza, M. M.; Alviola, P.; Balete Biodiversity monitoring in developing countries: what are we trying, Oryx, Volume 37 (2003) no. 4, pp. 407-409 | DOI

[8] Delahay, R.; Langton, S.; Smith, G.; Clifton-Hadley, R.; Cheeseman, C. The spatio-temporal distribution of Mycobacterium bovis (bovine tuberculosis) infection in a high-density badger population, Journal of Animal Ecology, Volume 69 (2000) no. 3, pp. 428-441 | DOI

[9] Delavenne, C.; Pandolfi, F.; Girard, S.; Réveillaud, E.; Jabert, P.; Boschiroli, M.; Dommergues, L.; Garapin, F.; Keck, N.; Martin, F.; Moussu, M.; Philizot, S.; Rivière, J.; Tourette, I.; Calavas, D.; Dupuy, C.; Dufour, B.; Chevalier, F. Tuberculose bovine : bilan et évolution de la situation épidémiologique entre 2015 et 2017 en France métropolitaine, Bulletin épidémiologique, Volume 91 (2019), pp. 1-22

[10] Delavenne, C.; Desvaux, S.; Boschiroli, M.; Carles, S.; Chaigneau, P.; Dufour, B.; Durand, B.; Gache, K.; Garapin, F.; Girard, S.; Jabert, P.; Keck, N.; Réveillaud, E.; Rivière, J.; Dupuy, C.; Chevalier, F. Surveillance de la tuberculose due à mycobacterium bovis en France métropolitaine en 2018 : résultats et indicateurs de fonctionnement, Bulletin Épidémiologique, Volume 94 (2021) no. 2, pp. 1-9

[11] Dohoo, I.; Martin, W.; Stryhn, H. Veterinary epidemiologic research, University of Prince Edward Island, 2003, p. 706

[12] Elmeros, M.; Madsen, A. B.; Prang, A. Home range of the badger (Meles meles) in a heterogeneous landscape in Denmark, Lutra, Volume 48 (2005) no. 1, p. 35

[13] Garnett, B.; Delahay, R.; Roper, T. Ranging behaviour of European badgers (Meles meles) in relation to bovine tuberculosis (Mycobacterium bovis) infection, Applied Animal Behaviour Science, Volume 94 (2005) no. 3–4, pp. 331-340 | DOI

[14] Gelman, A.; Meng, X. Model checking and model improvement, Markov chain Monte Carlo in practice, Chapman & Hall/CRC, 1996, pp. 189-201 | DOI

[15] Gelman, A.; Rubin, D. Inference from iterative simulation using multiple sequences, Statistical Science, Volume 7 (1992) no. 4, pp. 457-472 | DOI

[16] Gelman, A.; Hill, J. Data analysis using regression and multilevel/hierarchical models, Cambridge University Press, 2006 | DOI

[17] Gelman, A.; Pardoe, I. 2. Average predictive comparisons for models with nonlinearity, interactions, Sociological Methodology, Volume 37 (2007) no. 1, pp. 23-51 | DOI

[18] Gomila, R. Logistic or Linear? Estimating Causal Effects of Experimental Treatments, Journal of Experimental Psychology, Volume 150 (2021) no. 4, pp. 700-709 | DOI

[19] Guegan, J.-F. From disease surveillance to public action. Re-inforcing both epidemiological surveillance and data analysis: an illustration with Mycobacterium bovis, Peer Community In Infections, Volume 100088 (2024) | DOI

[20] Hellevik, O. Linear versus logistic regression when the dependent variable is, Quality & Quantity, Volume 43 (2009) no. 1, pp. 59-74 | DOI

[21] Hisakado, M.; Kitsukawa, K.; Mori, S. Correlated binomial models and correlation structures, Journal of Physics A: Mathematical and General, Volume 39 (2006) no. 50, p. 15365 | DOI

[22] Hosmer, D.; Lemeshow, S. Applied logistic regression. Second Edition., John Wiley & Sons, 2000 | DOI

[23] Jacquier, M.; Vandel, J.-M.; Léger, F.; Duhayer, J.; Pardonnet, S.; Say, L.; Devillard, S.; Ruette, S. Breaking down population density into different components to better understand its spatial variation, BMC Ecology and Evolution, Volume 21 (2021) no. 1 | DOI

[24] Kelsall, J. E.; Diggle, P. J. Non-parametric estimation of spatial variation in relative risk, Statistics in medicine, Volume 14 (1995) no. 21-22, pp. 2335-2342 | DOI

[25] King, G.; Zeng, L. Estimating risk and rate levels, ratios and differences in case-control, Statistics in medicine, Volume 21 (2002) no. 10, pp. 1409-1427 | DOI

[26] Marsot, M.; Béral, M.; Scoizec, A.; Mathevon, Y.; Durand, B.; Courcoul, A. Herd-level risk factors for bovine tuberculosis in French cattle herds, Preventive Veterinary Medicine, Volume 131 (2016), pp. 31-40 | DOI

[27] Martin, L. E. R.; Byrne, A. W.; O’Keeffe, J.; Miller, M. A.; Olea-Popelka, F. J. Weather influences trapping success for tuberculosis management in European badgers (Meles meles), European Journal of Wildlife Research, Volume 63 (2017) no. 1 | DOI

[28] Palisson, A. A. C. Role of Cattle Movements in Bovine Tuberculosis Spread in France between 2005 and 2014, PLOS ONE, Volume 11 (2016) no. 3, pp. 1-19 | DOI

[29] Payne, A. Rôle de la faune sauvage dans le système multi-hôtes, Université Claude Bernard-Lyon I (2014)

[30] Plummer, M.; Best, N.; Cowles, K.; Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC, R News, Volume 6 (2006) no. 1, pp. 7-11

[31] Pocock, M. J.; Newson, S. E.; Henderson, I. G. a. Developing and enhancing biodiversity monitoring programmes: a collaborative, Journal of Applied Ecology, Volume 52 (2015) no. 3, pp. 686-695 | DOI

[32] R Core Team R: A Language and Environment for Statistical Computing,, 2023

[33] Réveillaud, E.; Desvaux, S.; Boschiroli, M.-L.; Hars, J.; Faure, É.; Fediaevsky, A.; Cavalerie, L.; Chevalier, F.; Jabert, P.; Poliak, S.; Tourette, I.; Hendrikx, P.; Richomme, C. Infection of Wildlife by Mycobacterium bovis in France Assessment Through a National Surveillance System, Sylvatub, Frontiers in Veterinary Science, Volume 5 (2018), p. 262 | DOI

[34] Rivière, J.; Hars, J.; Richomme, C.; Fediaevsky, A.; Calavas, D.; Faure, E.; Hendrikx, P. La surveillance de la faune sauvage : de la théorie à la pratique avec l'exemple du réseau Sylvatub, Épidémiologie et Santé Animale, Volume 61 (2012), pp. 5-16

[35] Riviere, J.; Le Strat, Y.; Dufour, B.; Hendrikx, P. Sensitivity of bovine tuberculosis surveillance in wildlife in France: a scenario tree approach, PLoS One, Volume 10 (2015) no. 10, p. e0141884 | DOI

[36] Rogers, L.; Delahay, R.; Cheeseman, C.; Langton, S.; Smith Movement of badgers (Meles meles) in a high–density population:, Proceedings of the Royal Society of London B: Biological Sciences, Volume 265 (1998) no. 1403, pp. 1269-1276 | DOI

[37] Roper, T. J. Badger, HarperCollins UK, 2010

[38] Rue, H.; Held, L. Gaussian Markov Random Fields. Theory and Applications., Chapman & Hall/CRC, 2005 | DOI

[39] de Valpine, P.; Turek, D.; Paciorek, C. J. a. Programming with models: writing statistical algorithms for general, Journal of Computational and Graphical Statistics, Volume 26 (2017) no. 2, pp. 403-413 | DOI

[40] Weber, N.; Bearhop, S.; Dall, S. R.; Delahay, R. J.; McDonald, R. A.; Carter, S. P. Denning behaviour of the European badger (Meles meles) correlates with bovine tuberculosis infection status, Behavioral Ecology and Sociobiology, Volume 67 (2013) no. 3, pp. 471-479 | DOI

[41] Weber, N.; Carter, S. P.; Dall, S. R.; Delahay, R. J.; McDonald, J. L.; Bearhop, S.; McDonald, R. A. Badger social networks correlate with tuberculosis infection, Current Biology, Volume 23 (2013) no. 20, p. R915-R916 | DOI

[42] Wickham, H.; Grolemund, G. R for Data Science: Import, Tidy, Transform, Visualize, and Model, O’Reilly Media, 2017

[43] Wickham, H. ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, 2016 | DOI

[44] Wobeser, G. A. Investigation and management of disease in wild animals, Springer Science & Business Media, 1994 | DOI

Cited by Sources: