Section: Ecology
Topic: Ecology, Biology of interactions, Biophysics and computational biology

Provision of essential resources as a persistence strategy in food webs

Corresponding author(s): Raatz, Michael (mraatz@evolbio.mpg.de)

10.24072/pcjournal.315 - Peer Community Journal, Volume 3 (2023), article no. e82.

Get full text PDF Peer reviewed and recommended by PCI
article image

Pairwise interactions in food webs, including those between predator and prey are often modulated by a third species. Such higher-order interactions are important structural components of natural food webs that can increase the stability of communities against perturbations and ensure continued ecosystem functioning. Particularly the flux of rare organic and inorganic compounds that are essential to species in the community can create higher-order interactions. Even though many such compounds exist, their effect on structuring communities is little understood. In this study, I perform invasion analyses on a general food web model that depicts apparent and exploitative competition. Introducing the provision of essential resources by a prey species to either its competitor or its predator as a higher-order interaction, I find that this mechanism can ensure the focal prey’s persistence. Larger dietary essentiality, i.e. a stronger dependence of the predator or the competitor on the essential resource can increase the invasion growth rate of the focal prey to positive values, thus promoting its persistence when it would go extinct for low essentiality. This research shows that essential resources and the higher-order interactions created by them should be considered in community ecology.

Published online:
DOI: 10.24072/pcjournal.315
Type: Research article
Keywords: Higher-order interaction, Food webs, Food quality, Coexistence, Invasibility

Raatz, Michael 1

1 Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_315,
     author = {Raatz, Michael},
     title = {Provision of essential resources as a persistence strategy in food webs},
     journal = {Peer Community Journal},
     eid = {e82},
     publisher = {Peer Community In},
     volume = {3},
     year = {2023},
     doi = {10.24072/pcjournal.315},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.315/}
}
TY  - JOUR
AU  - Raatz, Michael
TI  - Provision of essential resources as a persistence strategy in food webs
JO  - Peer Community Journal
PY  - 2023
VL  - 3
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.315/
DO  - 10.24072/pcjournal.315
LA  - en
ID  - 10_24072_pcjournal_315
ER  - 
%0 Journal Article
%A Raatz, Michael
%T Provision of essential resources as a persistence strategy in food webs
%J Peer Community Journal
%D 2023
%V 3
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.315/
%R 10.24072/pcjournal.315
%G en
%F 10_24072_pcjournal_315
Raatz, Michael. Provision of essential resources as a persistence strategy in food webs. Peer Community Journal, Volume 3 (2023), article  no. e82. doi : 10.24072/pcjournal.315. https://peercommunityjournal.org/articles/10.24072/pcjournal.315/

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.ecology.100527

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Abrams, P. A. Is Predator-Mediated Coexistence Possible in Unstable Systems?, Ecology, Volume 80 (1999) no. 2 | DOI

[2] Adamowicz, E. M.; Flynn, J.; Hunter, R. C.; Harcombe, W. R. Cross-feeding modulates antibiotic tolerance in bacterial communities, The ISME Journal, Volume 12 (2018) no. 11, pp. 2723-2735 | DOI

[3] Akduman, N.; Lightfoot, J. W.; Röseler, W.; Witte, H.; Lo, W.-S.; Rödelsperger, C.; Sommer, R. J. Bacterial vitamin B12 production enhances nematode predatory behavior, The ISME Journal, Volume 14 (2020) no. 6, pp. 1494-1507 | DOI

[4] Andersen, T.; Elser, J. J.; Hessen, D. O. Stoichiometry and population dynamics, Ecology Letters, Volume 7 (2004) no. 9, pp. 884-900 | DOI

[5] Anderson, T. R.; Hessen, D. O. Threshold elemental ratios for carbon versus phosphorus limitation in Daphnia, Freshwater Biology, Volume 50 (2005) no. 12, pp. 2063-2075 | DOI

[6] Arditi, R.; Michalski, J.; Hirzel, A. H. Rheagogies: Modelling non-trophic effects in food webs, Ecological Complexity, Volume 2 (2005) no. 3, pp. 249-258 | DOI

[7] Azam, F.; Fenchel, T.; Field, J.; Gray, J.; Meyer-Reil, L.; Thingstad, F. The Ecological Role of Water-Column Microbes in the Sea, Marine Ecology Progress Series, Volume 10 (1983), pp. 257-263 | DOI

[8] Billick, I.; Case, T. J. Higher Order Interactions in Ecological Communities: What Are They and How Can They be Detected?, Ecology, Volume 75 (1994) no. 6, pp. 1529-1543 | DOI

[9] Bolker, B.; Holyoak, M.; Křivan, V.; Rowe, L.; Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions, Ecology, Volume 84 (2003) no. 5, pp. 1101-1114 | DOI

[10] Bratbak, G.; Thingstad, T. F. Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism, Deep Sea Research Part B. Oceanographic Literature Review, Volume 33 (1986) no. 3 | DOI

[11] Burian, A.; Nielsen, J. M.; Winder, M. Food quantity–quality interactions and their impact on consumer behavior and trophic transfer, Ecological Monographs, Volume 90 (2019) no. 1, pp. 1-19 | DOI

[12] Buskey, E. Behavioral components of feeding selectivity of the heterotrophic dinoflagellate Protoperidinium pellucidum, Marine Ecology Progress Series, Volume 153 (1997), pp. 77-89 | DOI

[13] Chesson, P. Multispecies Competition in Variable Environments, Theoretical Population Biology, Volume 45 (1994) no. 3, pp. 227-276 | DOI

[14] Croft, M. T.; Lawrence, A. D.; Raux-Deery, E.; Warren, M. J.; Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria, Nature, Volume 438 (2005) no. 7064, pp. 90-93 | DOI

[15] D'Souza, G.; Shitut, S.; Preussger, D.; Yousif, G.; Waschina, S.; Kost, C. Ecology and evolution of metabolic cross-feeding interactions in bacteria, Natural Product Reports, Volume 35 (2018) no. 5, pp. 455-488 | DOI

[16] Douglas, A. E. Multiorganismal Insects: Diversity and Function of Resident Microorganisms, Annual Review of Entomology, Volume 60 (2015) no. 1, pp. 17-34 | DOI

[17] Eberl, F.; Fernandez de Bobadilla, M.; Reichelt, M.; Hammerbacher, A.; Gershenzon, J.; Unsicker, S. B. Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit, Ecology Letters, Volume 23 (2020) no. 7, pp. 1073-1084 | DOI

[18] Ehrlich, E.; Becks, L.; Gaedke, U. Trait-fitness relationships determine how trade-off shapes affect species coexistence, Ecology, Volume 98 (2017) no. 12, pp. 3188-3198 | DOI

[19] Ehrlich, E.; Gaedke, U. Not attackable or not crackable-How pre- and post-attack defenses with different competition costs affect prey coexistence and population dynamics, Ecology and Evolution, Volume 8 (2018) no. 13, pp. 6625-6637 | DOI

[20] Ellner, S. P.; Snyder, R. E.; Adler, P. B.; Hooker, G. An expanded modern coexistence theory for empirical applications, Ecology Letters, Volume 22 (2018) no. 1, pp. 3-18 | DOI

[21] Elser, J.; Kyle, M.; Learned, J.; McCrackin, M.; Peace, A.; Steger, L. Life on the stoichiometric knife-edge: effects of high and low food C:P ratio on growth, feeding, and respiration in three Daphnia species, Inland Waters, Volume 6 (2016) no. 2, pp. 136-146 | DOI

[22] Filipiak, M.; Kuszewska, K.; Asselman, M.; Denisow, B.; Stawiarz, E.; Woyciechowski, M.; Weiner, J. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality, PLOS ONE, Volume 12 (2017) no. 8 | DOI

[23] Gaedke, U.; Hochstädter, S.; Straile, D. Interplay between energy limitation and nutritional deficiency: empirical data and food web models, Ecological Monographs, Volume 72 (2002) no. 2, pp. 251-270 | DOI

[24] Gibbs, T.; Gellner, G.; Levin, S. A.; McCann, K. S.; Hastings, A.; Levine, J. M. Can higher-order interactions resolve the species coexistence paradox?, bioRxiv, 2023 | DOI

[25] Golubski, A. J.; Westlund, E. E.; Vandermeer, J.; Pascual, M. Ecological Networks over the Edge: Hypergraph Trait-Mediated Indirect Interaction (TMII) Structure, Trends in Ecology & Evolution, Volume 31 (2016) no. 5, pp. 344-354 | DOI

[26] González González, C.; Mora Van Cauwelaert, E.; Boyer, D.; Perfecto, I.; Vandermeer, J.; Benítez, M. High-order interactions maintain or enhance structural robustness of a coffee agroecosystem network, Ecological Complexity, Volume 47 (2021) | DOI

[27] Gore, J.; Youk, H.; van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast, Nature, Volume 459 (2009) no. 7244, pp. 253-256 | DOI

[28] Grainger, T. N.; Levine, J. M.; Gilbert, B. The Invasion Criterion: A Common Currency for Ecological Research, Trends in Ecology & Evolution, Volume 34 (2019) no. 10, pp. 925-935 | DOI

[29] Grilli, J.; Barabás, G.; Michalska-Smith, M. J.; Allesina, S. Higher-order interactions stabilize dynamics in competitive network models, Nature, Volume 548 (2017) no. 7666, pp. 210-213 | DOI

[30] Gross, K. Positive interactions among competitors can produce species-rich communities, Ecology Letters, Volume 11 (2008) no. 9, pp. 929-936 | DOI

[31] Guo, F.; Kainz, M. J.; Sheldon, F.; Bunn, S. E. The importance of high-quality algal food sources in stream food webs - current status and future perspectives, Freshwater Biology, Volume 61 (2016) no. 6, pp. 815-831 | DOI

[32] Hammarlund, S. P.; Chacón, J. M.; Harcombe, W. R. A shared limiting resource leads to competitive exclusion in a cross-feeding system, Environmental Microbiology, Volume 21 (2019) no. 2, pp. 759-771 | DOI

[33] Herren, C. M. Disruption of cross-feeding interactions by invading taxa can cause invasional meltdown in microbial communities, Proceedings of the Royal Society B: Biological Sciences, Volume 287 (2020) no. 1927 | DOI

[34] Iwabuchi, T.; Urabe, J. Food quality and food threshold: implications of food stoichiometry to competitive ability of herbivore plankton, Ecosphere, Volume 3 (2012) no. 6 | DOI

[35] Jones, L. E.; Ellner, S. P. Effects of rapid prey evolution on predator–prey cycles, Journal of Mathematical Biology, Volume 55 (2007) no. 4, pp. 541-573 | DOI

[36] Kazamia, E.; Czesnick, H.; Nguyen, T. T. V.; Croft, M. T.; Sherwood, E.; Sasso, S.; Hodson, S. J.; Warren, M. J.; Smith, A. G. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation, Environmental Microbiology, Volume 14 (2012) no. 6, pp. 1466-1476 | DOI

[37] Keating, K. I. The Influence of Vitamin B12 Deficiency on the Reproduction of Daphnia Pulex Leydig (Cladocera), Journal of Crustacean Biology, Volume 5 (1985) no. 1, pp. 130-136 | DOI

[38] Kéfi, S.; Berlow, E. L.; Wieters, E. A.; Joppa, L. N.; Wood, S. A.; Brose, U.; Navarrete, S. A. Network structure beyond food webs: mapping non‐trophic and trophic interactions on Chilean rocky shores, Ecology, Volume 96 (2015) no. 1, pp. 291-303 | DOI

[39] Kéfi, S.; Berlow, E. L.; Wieters, E. A.; Navarrete, S. A.; Petchey, O. L.; Wood, S. A.; Boit, A.; Joppa, L. N.; Lafferty, K. D.; Williams, R. J.; Martinez, N. D.; Menge, B. A.; Blanchette, C. A.; Iles, A. C.; Brose, U. More than a meal… integrating non-feeding interactions into food webs, Ecology Letters, Volume 15 (2012) no. 4, pp. 291-300 | DOI

[40] Koedooder, C.; Stock, W.; Willems, A.; Mangelinckx, S.; De Troch, M.; Vyverman, W.; Sabbe, K. Diatom-Bacteria Interactions Modulate the Composition and Productivity of Benthic Diatom Biofilms, Frontiers in Microbiology, Volume 10 (2019) | DOI

[41] Koussoroplis, A.; Schälicke, S.; Raatz, M.; Bach, M.; Wacker, A. Feeding in the frequency domain: coarser‐grained environments increase consumer sensitivity to resource variability, covariance and phase, Ecology Letters, Volume 22 (2019) no. 7, pp. 1104-1114 | DOI

[42] Kusari, F.; O’Doherty, A. M.; Hodges, N. J.; Wojewodzic, M. W. Bi-directional effects of vitamin B12 and methotrexate on Daphnia magna fitness and genomic methylation, Scientific Reports, Volume 7 (2017) no. 1 | DOI

[43] Kylafis, G.; Loreau, M. Ecological and evolutionary consequences of niche construction for its agent, Ecology Letters, Volume 11 (2008) no. 10, pp. 1072-1081 | DOI

[44] Kylafis, G.; Loreau, M. Niche construction in the light of niche theory, Ecology Letters, Volume 14 (2010) no. 2, pp. 82-90 | DOI

[45] Laland, K.; Matthews, B.; Feldman, M. W. An introduction to niche construction theory, Evolutionary Ecology, Volume 30 (2016) no. 2, pp. 191-202 | DOI

[46] Levine, J. M.; Bascompte, J.; Adler, P. B.; Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities, Nature, Volume 546 (2017) no. 7656, pp. 56-64 | DOI

[47] Macarthur, R.; Levins, R. The Limiting Similarity, Convergence, and Divergence of Coexisting Species, The American Naturalist, Volume 101 (1967) no. 921, pp. 377-385 | DOI

[48] Mayfield, M. M.; Stouffer, D. B. Higher-order interactions capture unexplained complexity in diverse communities, Nature Ecology & Evolution, Volume 1 (2017) no. 3 | DOI

[49] Meunier, C. L.; Boersma, M.; Wiltshire, K. H.; Malzahn, A. M. Zooplankton eat what they need: copepod selective feeding and potential consequences for marine systems, Oikos, Volume 125 (2015) no. 1, pp. 50-58 | DOI

[50] Miele, V.; Guill, C.; Ramos-Jiliberto, R.; Kéfi, S. Non-trophic interactions strengthen the diversity—functioning relationship in an ecological bioenergetic network model, PLOS Computational Biology, Volume 15 (2019) no. 8 | DOI

[51] Muller, E. B.; Nisbet, R. M.; Kooijman, S. A. L. M.; Elser, J. J.; McCauley, E. Stoichiometric food quality and herbivore dynamics, Ecology Letters, Volume 4 (2001) no. 6, pp. 519-529 | DOI

[52] Oña, L.; Giri, S.; Avermann, N.; Kreienbaum, M.; Thormann, K. M.; Kost, C. Obligate cross-feeding expands the metabolic niche of bacteria, Nature Ecology & Evolution, Volume 5 (2021) no. 9, pp. 1224-1232 | DOI

[53] Oña, L.; Kost, C. Cooperation increases robustness to ecological disturbance in microbial cross‐feeding networks, Ecology Letters, Volume 25 (2022) no. 6, pp. 1410-1420 | DOI

[54] Pomeroy, L.; leB. Williams, P.; Azam, F.; Hobbie, J. The Microbial Loop, Oceanography, Volume 20 (2007) no. 2, pp. 28-33 | DOI

[55] Raatz, M.; Schälicke, S.; Sieber, M.; Wacker, A.; Gaedke, U. One man's trash is another man's treasure-the effect of bacteria on phytoplankton-zooplankton interactions in chemostat systems, Limnology and Oceanography: Methods, Volume 16 (2018) no. 10, pp. 629-639 | DOI

[56] Raatz, M.; Gaedke, U.; Wacker, A. High food quality of prey lowers its risk of extinction, Oikos, Volume 126 (2017) no. 10, pp. 1501-1510 | DOI

[57] Raatz, M.; Velzen, E.; Gaedke, U. Co‐adaptation impacts the robustness of predator–prey dynamics against perturbations, Ecology and Evolution, Volume 9 (2019) no. 7, pp. 3823-3836 | DOI

[58] Raubenheimer, D.; Simpson, S. The geometry of compensatory feeding in the locust, Animal Behaviour, Volume 45 (1993) no. 5, pp. 953-964 | DOI

[59] Rosenbaum, B.; Raatz, M.; Weithoff, G.; Fussmann, G. F.; Gaedke, U. Estimating Parameters From Multiple Time Series of Population Dynamics Using Bayesian Inference, Frontiers in Ecology and Evolution, Volume 6 (2019) | DOI

[60] Schade, J. D.; Kyle, M.; Hobbie, S. E.; Fagan, W. F.; Elser, J. J. Stoichiometric tracking of soil nutrients by a desert insect herbivore, Ecology Letters, Volume 6 (2003) no. 2, pp. 96-101 | DOI

[61] Schälicke, S.; Sobisch, L.; Martin‐Creuzburg, D.; Wacker, A. Food quantity–quality co‐limitation: Interactive effects of dietary carbon and essential lipid supply on population growth of a freshwater rotifer, Freshwater Biology, Volume 64 (2019) no. 5, pp. 903-912 | DOI

[62] Simpson, S. J.; Sibly, R. M.; Lee, K. P.; Behmer, S. T.; Raubenheimer, D. Optimal foraging when regulating intake of multiple nutrients, Animal Behaviour, Volume 68 (2004) no. 6, pp. 1299-1311 | DOI

[63] Singer, M. S.; Farkas, T. E.; Skorik, C. M.; Mooney, K. A. Tritrophic Interactions at a Community Level: Effects of Host Plant Species Quality on Bird Predation of Caterpillars, The American Naturalist, Volume 179 (2012) no. 3, pp. 363-374 | DOI

[64] Soria-Dengg, S.; Reissbrodt, R.; Horstmann, U. Siderophores in marine coastal waters and their relevance for iron uptake by phytoplankton: experiments with the diatom Phaeodactylum tricornutum, Marine Ecology Progress Series, Volume 220 (2001), pp. 73-82 | DOI

[65] Stiefs, D.; van Voorn, G. A. K.; Kooi, B. W.; Feudel, U.; Gross, T. Food Quality in Producer‐Grazer Models: A Generalized Analysis, The American Naturalist, Volume 176 (2010) no. 3, pp. 367-380 | DOI

[66] Suleiman, M.; Zecher, K.; Yücel, O.; Jagmann, N.; Philipp, B. Interkingdom Cross-Feeding of Ammonium from Marine Methylamine-Degrading Bacteria to the Diatom Phaeodactylum tricornutum, Applied and Environmental Microbiology, Volume 82 (2016) no. 24, pp. 7113-7122 | DOI

[67] Sun, Z.; Koffel, T.; Stump, S. M.; Grimaud, G. M.; Klausmeier, C. A. Microbial cross-feeding promotes multiple stable states and species coexistence, but also susceptibility to cheaters, Journal of Theoretical Biology, Volume 465 (2019), pp. 63-77 | DOI

[68] Terry, J. C. D.; Morris, R. J.; Bonsall, M. B. Interaction modifications lead to greater robustness than pairwise non‐trophic effects in food webs, Journal of Animal Ecology, Volume 88 (2019) no. 11, pp. 1732-1742 | DOI

[69] Urabe, J.; Shimizu, Y.; Yamaguchi, T. Understanding the stoichiometric limitation of herbivore growth: the importance of feeding and assimilation flexibilities, Ecology Letters, Volume 21 (2017) no. 2, pp. 197-206 | DOI

[70] Wacker, A.; Martin-Creuzburg, D. Biochemical nutrient requirements of the rotifer Brachionus calyciflorus: co-limitation by sterols and amino acids, Functional Ecology, Volume 26 (2012) no. 5, pp. 1135-1143 | DOI

[71] Werner, E. E.; Peacor, S. D. A review of trait-mediated indirect interactions in ecological communities, Ecology, Volume 84 (2003) no. 5, pp. 1083-1100 | DOI

[72] Wolfram Research Inc. Mathematica, Version 12.0, Wolfram Research Inc., Champaign, IL, 2019

[73] Wootton, J. T. Indirect Effects and Habitat Use in an Intertidal Community: Interaction Chains and Interaction Modifications, The American Naturalist, Volume 141 (1993) no. 1, pp. 71-89 | DOI

[74] Wootton, J. Indirect effects in complex ecosystems: recent progress and future challenges, Journal of Sea Research, Volume 48 (2002) no. 2, pp. 157-172 | DOI

[75] Yamamichi, M.; Yoshida, T.; Sasaki, A. Timing and propagule size of invasion determine its success by a time-varying threshold of demographic regime shift, Ecology, Volume 95 (2014) no. 8, pp. 2303-2315 | DOI

Cited by Sources:

block.super